Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Neurol Genet ; 10(3): e200155, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38725677

RESUMEN

Background and Objectives: Description of 15 patients with the same variant in DOK7 causing congenital myasthenic syndrome (CMS). Methods: Nine adult and 6 pediatric patients were studied with molecular genetic and clinical investigations. Results: All patients were identified with the c.1508dupC variant in DOK7, of whom 13 were homozygous and 2 patients compound heterozygous. Only 2 patients had limb girdle phenotype, while all adult patients also had ptosis, ophthalmoplegia, facial weakness, as well as inspiratory stridor. Pediatric patients had severe respiratory insufficiency and feeding difficulties at birth. Discussion: The disease severity in our patients varied extensively from ventilator or wheelchair dependence to mild facial weakness, ptosis, and ophthalmoparesis. Most of the patients had normal transmission in conventional 3 Hz stimulation electrophysiologic studies, making the diagnosis of CMS challenging. Our cohort of adult and pediatric patients expands the phenotype of DOK7 CMS and shows the importance of correct and early diagnosis.

2.
Emerg Infect Dis ; 27(12): 3137-3141, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34708686

RESUMEN

Severe acute respiratory syndrome coronavirus 2 Alpha and Beta variants became dominant in Finland in spring 2021 but had diminished by summer. We used phylogenetic clustering to identify sources of spreading. We found that outbreaks were mostly seeded by a few introductions, highlighting the importance of surveillance and prevention policies.


Asunto(s)
COVID-19 , SARS-CoV-2 , Finlandia/epidemiología , Humanos , Incidencia , Filogenia
3.
J Neuromuscul Dis ; 7(2): 153-166, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32039858

RESUMEN

BACKGROUND: Extensive genetic screening results in the identification of thousands of rare variants that are difficult to interpret. Because of its sheer size, rare variants in the titin gene (TTN) are detected frequently in any individual. Unambiguous interpretation of molecular findings is almost impossible in many patients with myopathies or cardiomyopathies. OBJECTIVE: To refine the current classification framework for TTN-associated skeletal muscle disorders and standardize the interpretation of TTN variants. METHODS: We used the guidelines issued by the American College of Medical Genetics and Genomics (ACMG) and the Association for Molecular Pathology (AMP) to re-analyze TTN genetic findings from our patient cohort. RESULTS: We identified in the classification guidelines three rules that are not applicable to titin-related skeletal muscle disorders; six rules that require disease-/gene-specific adjustments and four rules requiring quantitative thresholds for a proper use. In three cases, the rule strength need to be modified. CONCLUSIONS: We suggest adjustments are made to the guidelines. We provide frequency thresholds to facilitate filtering of candidate causative variants and guidance for the use and interpretation of functional data and co-segregation evidence. We expect that the variant classification framework for TTN-related skeletal muscle disorders will be further improved along with a better understanding of these diseases.


Asunto(s)
Cardiomiopatías , Conectina/genética , Enfermedades Musculares , Guías de Práctica Clínica como Asunto/normas , Cardiomiopatías/clasificación , Cardiomiopatías/congénito , Cardiomiopatías/genética , Humanos , Enfermedades Musculares/clasificación , Enfermedades Musculares/congénito , Enfermedades Musculares/genética
4.
J Neurol ; 266(7): 1649-1654, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30963254

RESUMEN

Limb-girdle muscular dystrophies (LGMD) are genetic disorders characterized by weakness of predominantly proximal limb and trunk muscles due to progressive loss of muscle tissue. Collagen VI-related muscular dystrophies usually display more generalized muscle involvement combined with contractures and/or hyperlaxity of distal finger joints. LGMD-like phenotype of collagenopathy has only rarely been described and as reported is usually of childhood onset. We identified a Finnish family with COL6A2-related LGMD with autosomal dominant inheritance and very late onset at 40-60 years of age. Since the mutation was previously unreported, the pathognomonic findings on muscle MRI were the decisive clue for the correct diagnosis.


Asunto(s)
Colágeno Tipo VI/genética , Distrofia Muscular de Cinturas/diagnóstico por imagen , Distrofia Muscular de Cinturas/genética , Mutación/genética , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Linaje
5.
Neurology ; 92(14): e1600-e1609, 2019 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-30842289

RESUMEN

OBJECTIVE: To identify the genetic defect causing a distal calf myopathy with cores. METHODS: Families with a genetically undetermined calf-predominant myopathy underwent detailed clinical evaluation, including EMG/nerve conduction studies, muscle biopsy, laboratory investigations, and muscle MRI. Next-generation sequencing and targeted Sanger sequencing were used to identify the causative genetic defect in each family. RESULTS: A novel deletion-insertion mutation in ryanodine receptor 1 (RYR1) was found in the proband of the index family and segregated with the disease in 6 affected relatives. Subsequently, we found 2 more families with a similar calf-predominant myopathy segregating with unique RYR1-mutated alleles. All patients showed a very slowly progressive myopathy without episodes of malignant hyperthermia or rhabdomyolysis. Muscle biopsy showed cores or core-like changes in all families. CONCLUSIONS: Our findings expand the spectrum of RYR1-related disorders to include a calf-predominant myopathy with core pathology and autosomal dominant inheritance. Two families had unique and previously unreported RYR1 mutations, while affected persons in the third family carried 2 previously known mutations in the same dominant allele.


Asunto(s)
Miopatías Distales/genética , Canal Liberador de Calcio Receptor de Rianodina/genética , Adolescente , Adulto , Anciano , Niño , Creatina Quinasa/metabolismo , Miopatías Distales/metabolismo , Miopatías Distales/patología , Miopatías Distales/fisiopatología , Femenino , Humanos , Mutación INDEL , Pierna , Masculino , Persona de Mediana Edad , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Linaje , Canal Liberador de Calcio Receptor de Rianodina/metabolismo
6.
Mol Neurobiol ; 54(9): 7212-7223, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-27796757

RESUMEN

Tibial muscular dystrophy (TMD) is the first described human titinopathy. It is a mild adult-onset slowly progressive myopathy causing weakness and atrophy in the anterior lower leg muscles. TMD is caused by mutations in the last two exons, Mex5 and Mex6, of the titin gene (TTN). The first reported TMD mutations were dominant, but the Finnish founder mutation FINmaj, an 11-bp insertion/deletion in Mex6, in homozygosity caused a completely different severe early-onset limb-girdle muscular dystrophy 2J (LGMD2J). Later, we reported that not all TMD mutations cause LGMD when homozygous or compound heterozygous with truncating mutation, but some of them rather cause a more severe TMD-like distal disease. We have now performed targeted next-generation sequencing of myopathy-related genes on seven families from Albania, Bosnia, Iran, Tunisia, Belgium, and Spain with juvenile or early adult onset recessive distal myopathy. Novel mutations in TTN Mex5, Mex6 and A-band exon 340 were identified in homozygosity or compound heterozygosity with a frameshift or nonsense mutation in TTN I- or A-band region. Family members having only one of these TTN mutations were healthy. Our results add yet another entity to the list of distal myopathies: juvenile or early adult onset recessive distal titinopathy.


Asunto(s)
Conectina/genética , Miopatías Distales/diagnóstico por imagen , Miopatías Distales/genética , Marcación de Gen/métodos , Mutación/genética , Análisis de Secuencia de ADN/métodos , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Masculino , Linaje , Adulto Joven
7.
Ann Neurol ; 73(4): 500-9, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23401021

RESUMEN

OBJECTIVE: A study was undertaken to identify the molecular cause of Welander distal myopathy (WDM), a classic autosomal dominant distal myopathy. METHODS: The genetic linkage was confirmed and defined by microsatellite and single nucleotide polymorphism haplotyping. The whole linked genomic region was sequenced with targeted high-throughput and Sanger sequencing, and coding transcripts were sequenced on the cDNA level. WDM muscle biopsies were studied by Western blotting and immunofluorescence microscopy. Splicing of TIA1 and its target genes in muscle and myoblast cultures was analyzed by reverse transcriptase polymerase chain reaction. Mutant TIA1 was characterized by cell biological studies on HeLa cells, including quantification of stress granules by high content analysis and fluorescence recovery after photobleaching (FRAP) experiments. RESULTS: The linked haplotype at 2p13 was narrowed down to <806 kb. Sequencing by multiple methods revealed only 1 segregating coding mutation, c.1362 G>A (p.E384K) in the RNA-binding protein TIA1, a key component of stress granules. Immunofluorescence microscopy of WDM biopsies showed a focal increase of TIA1 in atrophic and vacuolated fibers. In HeLa cells, mutant TIA1 constructs caused a mild increase in stress granule abundance compared to wild type, and showed slower average fluorescence recovery in FRAP. INTERPRETATION: WDM is caused by mutated TIA1 through a dominant pathomechanism probably involving altered stress granule dynamics.


Asunto(s)
Miopatías Distales/genética , Predisposición Genética a la Enfermedad/genética , Mutación/genética , Proteínas de Unión a Poli(A)/genética , Células Cultivadas , Femenino , Recuperación de Fluorescencia tras Fotoblanqueo , Ligamiento Genético , Genotipo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HeLa , Humanos , Masculino , Repeticiones de Microsatélite/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Fotoblanqueo , Polimorfismo de Nucleótido Simple/genética , Proteínas/genética , Proteínas/metabolismo , Antígeno Intracelular 1 de las Células T , Ubiquitina/metabolismo
8.
Nat Genet ; 44(4): 450-5, S1-2, 2012 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-22366786

RESUMEN

Limb-girdle muscular dystrophy type 1D (LGMD1D) was linked to chromosome 7q36 over a decade ago, but its genetic cause has remained elusive. Here we studied nine LGMD-affected families from Finland, the United States and Italy and identified four dominant missense mutations leading to p.Phe93Leu or p.Phe89Ile changes in the ubiquitously expressed co-chaperone DNAJB6. Functional testing in vivo showed that the mutations have a dominant toxic effect mediated specifically by the cytoplasmic isoform of DNAJB6. In vitro studies demonstrated that the mutations increase the half-life of DNAJB6, extending this effect to the wild-type protein, and reduce its protective anti-aggregation effect. Further, we show that DNAJB6 interacts with members of the CASA complex, including the myofibrillar myopathy-causing protein BAG3. Our data identify the genetic cause of LGMD1D, suggest that its pathogenesis is mediated by defective chaperone function and highlight how mutations in a ubiquitously expressed gene can exert effects in a tissue-, isoform- and cellular compartment-specific manner.


Asunto(s)
Proteínas del Choque Térmico HSP40/genética , Chaperonas Moleculares/genética , Distrofia Muscular de Cinturas/genética , Distrofia Muscular de Cinturas/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis , Finlandia , Genotipo , Proteínas del Choque Térmico HSP40/metabolismo , Humanos , Italia , Chaperonas Moleculares/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Distrofia Muscular de Cinturas/patología , Mutación Missense , Proteínas del Tejido Nervioso/metabolismo , Estados Unidos , Pez Cebra/embriología , Pez Cebra/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...