Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Commun Med (Lond) ; 3(1): 4, 2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36653534

RESUMEN

BACKGROUND: Testosterone levels are linked with diverse characteristics of human health, yet, whether these associations reflect correlation or causation remains debated. Here, we provide a broad perspective on the role of genetically determined testosterone on complex diseases in both sexes. METHODS: Leveraging genetic and health registry data from the UK Biobank and FinnGen (total N = 625,650), we constructed polygenic scores (PGS) for total testosterone, sex-hormone binding globulin (SHBG) and free testosterone, associating these with 36 endpoints across different disease categories in the FinnGen. These analyses were combined with Mendelian Randomization (MR) and cross-sex PGS analyses to address causality. RESULTS: We show testosterone and SHBG levels are intricately tied to metabolic health, but report lack of causality behind most associations, including type 2 diabetes (T2D). Across other disease domains, including 13 behavioral and neurological diseases, we similarly find little evidence for a substantial contribution from normal variation in testosterone levels. We nonetheless find genetically predicted testosterone affects many sex-specific traits, with a pronounced impact on female reproductive health, including causal contribution to PCOS-related traits like hirsutism and post-menopausal bleeding (PMB). We also illustrate how testosterone levels associate with antagonistic effects on stroke risk and reproductive endpoints between the sexes. CONCLUSIONS: Overall, these findings provide insight into how genetically determined testosterone correlates with several health parameters in both sexes. Yet the lack of evidence for a causal contribution to most traits beyond sex-specific health underscores the complexity of the mechanisms linking testosterone levels to disease risk and sex differences.


Hormones, such as testosterone, travel around the body communicating between the different parts. Testosterone is present at higher levels in men, but also present in women. Variable testosterone levels explain some differences in human traits and disease prevalence. Here, we study how adult testosterone levels relate to health and disease. Genetic, i.e. inherited, differences in testosterone levels contribute to many traits specific to men or women, such as women's reproductive health, hormonal cancers, and hair growth typical in males. However, testosterone levels do not appear as a major cause of most traits studied, including psychiatric diseases and metabolic health. Normal variation in baseline testosterone levels thus seems to have a relatively minor impact on health and disease.

2.
Nat Commun ; 13(1): 3690, 2022 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-35760976

RESUMEN

It is unclear how the 22q11.2 deletion predisposes to psychiatric disease. To study this, we generated induced pluripotent stem cells from deletion carriers and controls and utilized CRISPR/Cas9 to introduce the heterozygous deletion into a control cell line. Here, we show that upon differentiation into neural progenitor cells, the deletion acted in trans to alter the abundance of transcripts associated with risk for neurodevelopmental disorders including autism. In excitatory neurons, altered transcripts encoded presynaptic factors and were associated with genetic risk for schizophrenia, including common and rare variants. To understand how the deletion contributed to these changes, we defined the minimal protein-protein interaction network that best explains gene expression alterations. We found that many genes in 22q11.2 interact in presynaptic, proteasome, and JUN/FOS transcriptional pathways. Our findings suggest that the 22q11.2 deletion impacts genes that may converge with psychiatric risk loci to influence disease manifestation in each deletion carrier.


Asunto(s)
Síndrome de DiGeorge , Células Madre Pluripotentes Inducidas , Esquizofrenia , Línea Celular , Síndrome de DiGeorge/genética , Humanos , Neuronas , ARN , Esquizofrenia/genética
3.
Sci Rep ; 9(1): 18060, 2019 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-31792362

RESUMEN

Genome-wide association studies (GWAS) have recurrently associated sequence variation nearby LIN28B with pubertal timing, growth and disease. However, the biology linking LIN28B with these traits is still poorly understood. With our study, we sought to elucidate the mechanisms behind the LIN28B associations, with a special focus on studying LIN28B function at the hypothalamic-pituitary (HP) axis that is ultimately responsible for pubertal onset. Using CRISPR-Cas9 technology, we first generated lin28b knockout (KO) zebrafish. Compared to controls, the lin28b KO fish showed both accelerated growth tempo, reduced adult size and increased expression of mitochondrial genes during larval development. Importantly, data from the knockout zebrafish models and adult humans imply that LIN28B expression has potential to affect gene expression in the HP axis. Specifically, our results suggest that LIN28B expression correlates positively with the expression of ESR1 in the hypothalamus and POMC in the pituitary. Moreover, we show how the pubertal timing advancing allele (T) for rs7759938 at the LIN28B locus associates with higher testosterone levels in the UK Biobank data. Overall, we provide novel evidence that LIN28B contributes to the regulation of sex hormone pathways, which might help explain why the gene associates with several distinct traits.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Sistema Hipotálamo-Hipofisario/metabolismo , Proopiomelanocortina/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Testosterona/sangre , Proteínas de Pez Cebra/metabolismo , Alelos , Animales , Animales Modificados Genéticamente , Sistemas CRISPR-Cas/genética , Biología Computacional , Conjuntos de Datos como Asunto , Receptor alfa de Estrógeno/metabolismo , Femenino , Técnicas de Silenciamiento del Gen , Técnicas de Inactivación de Genes , Humanos , Hipotálamo/metabolismo , Masculino , Modelos Animales , Hipófisis/metabolismo , Polimorfismo de Nucleótido Simple , RNA-Seq , Maduración Sexual/genética , Testosterona/metabolismo , Pez Cebra , Proteínas de Pez Cebra/genética
4.
Sci Adv ; 4(5): eaap8957, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29806020

RESUMEN

Stroke is the most common cause of adult disability in developed countries, largely because spontaneous recovery is often incomplete, and no pharmacological means to hasten the recovery exist. It was recently shown that mesencephalic astrocyte-derived neurotrophic factor (MANF) induces alternative or M2 activation of immune cells after retinal damage in both fruit fly and mouse and mediates retinal repair. Therefore, we set out to study whether poststroke MANF administration would enhance brain tissue repair and affect behavioral recovery of rats after cerebral ischemic injury. We used the distal middle cerebral artery occlusion (dMCAo) model of ischemia-reperfusion injury and administered MANF either as a recombinant protein or via adeno-associated viral (AAV) vector. We discovered that, when MANF was administered to the peri-infarct region 2 or 3 days after stroke, it promoted functional recovery of the animals without affecting the lesion volume. Further, AAV7-MANF treatment transiently increased the number of phagocytic macrophages in the subcortical peri-infarct regions. In addition, the analysis of knockout mice revealed the neuroprotective effects of endogenous MANF against ischemic injury, although endogenous MANF had no effect on immune cell-related gene expression. The beneficial effect of MANF treatment on the reversal of stroke-induced behavioral deficits implies that MANF-based therapies could be used for the repair of brain tissue after stroke.


Asunto(s)
Astrocitos/metabolismo , Factores de Crecimiento Nervioso/genética , Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular/metabolismo , Animales , Conducta Animal , Isquemia Encefálica/complicaciones , Dependovirus/genética , Modelos Animales de Enfermedad , Expresión Génica , Vectores Genéticos/genética , Humanos , Imagen por Resonancia Magnética , Masculino , Factores de Crecimiento Nervioso/metabolismo , Ratas , Accidente Cerebrovascular/diagnóstico , Accidente Cerebrovascular/etiología , Transducción Genética , Transgenes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA