Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 375
Filtrar
1.
Genes (Basel) ; 15(9)2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39336704

RESUMEN

(1) Background: Mengshan cattle from the Yimeng mountainous region in China stand out as a unique genetic resource, known for their adaptive traits and environmental resilience. However, these cattle are currently endangered and comprehensive genomic characterization remains largely unexplored. This study aims to address this gap by investigating the genomic features and selection signals in Mengshan cattle. (2) Methods: Utilizing whole-genome resequencing data from 122 cattle, including 37 newly sequenced Mengshan cattle, we investigated population structure, genetic diversity, and selection signals. (3) Results: Our analyses revealed that current Mengshan cattle primarily exhibit European taurine cattle ancestry, with distinct genetic characteristics indicative of adaptive traits. We identified candidate genes associated with immune response, growth traits, meat quality, and neurodevelopment, shedding light on the genomic features underlying the unique attributes of Mengshan cattle. Enrichment analysis highlighted pathways related to insulin secretion, calcium signaling, and dopamine synapse, further elucidating the genetic basis of their phenotypic traits. (4) Conclusions: Our results provide valuable insights for further research and conservation efforts aimed at preserving this endangered genetic resource. This study enhances the understanding of population genetics and underscores the importance of genomic research in informing genetic resources and conservation initiatives for indigenous cattle breeds.


Asunto(s)
Selección Genética , Animales , Bovinos/genética , China , Genoma/genética , Genómica/métodos , Secuenciación Completa del Genoma , Fenotipo , Variación Genética , Genética de Población , Polimorfismo de Nucleótido Simple
2.
Sci Bull (Beijing) ; 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39322456

RESUMEN

Aurochs (Bos primigenius), once widely distributed in Afro-Eurasia, became extinct in the early 1600 s. However, their phylogeography and relative contributions to domestic cattle remain unknown. In this study, we analyzed 16 genomes of ancient aurochs and three mitogenomes of ancient bison (Bison priscus) excavated in East Asia, dating from 43,000 to 3,590 years ago. These newly generated data with previously published genomic information on aurochs as well as ancient/extant domestic cattle worldwide through genome analysis. Our findings revealed significant genetic divergence between East Asian aurochs and their European, Near Eastern, and African counterparts on the basis of both mitochondrial and nuclear genomic data. Furthermore, we identified evidence of gene flow from East Asian aurochs into ancient and present-day taurine cattle, suggesting their potential role in facilitating the environmental adaptation of domestic cattle.

3.
Front Genet ; 15: 1435793, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39119576

RESUMEN

Introduction: To enhance the beef cattle industry, Heilongjiang Province has developed a new Crossbred beef cattle variety through crossbreeding with exotic commercial breeds. This new variety exhibits relatively excellent meat quality, and efficient reproductive performance, catering to market demands. Method: This study employed whole genome resequencing technology to analyze the genetic pedigree and diversity of 19 Heilongjiang Crossbred beef cattle, alongside 59 published genomes from East Asian, Eurasian, and European taurine cattle as controls. In addition, genes related to production traits were also searched by identifying Runs of Homozygosity (ROH) islands and important fragments from ancestors. Results: A total of 14,427,729 biallelic SNPs were discovered, with the majority located in intergenic and intron regions and a small percentage in exon regions, impacting protein function. Population genetic analyses including Principal Component Analysis (PCA), Neighbor-Joining (NJ) tree, and ADMIXTURE identified Angus, Holstein, and Mishima as the main ancestors of Crossbred beef cattle. In genetic diversity analysis, nucleotide diversity, linkage disequilibrium, and inbreeding coefficient analysis reveal that the genetic diversity of Crossbred beef cattle is at a moderate level, and a higher inbreeding coefficient indicates the need for careful breeding management. In addition, some genes related to economic traits are identified through the identification of Runs of Homozygosity (ROH) islands and important fragments from ancestors. Conclusion: This comprehensive genomic characterization supports the targeted improvement of economically important traits in Crossbred beef cattle, facilitating advanced breeding strategies.

4.
Genes (Basel) ; 15(7)2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39062688

RESUMEN

(1) Background: Matou goats, native to Hunan and Hubei provinces in China, are renowned for their exceptional meat and skin quality. However, a comprehensive whole-genome-based exploration of the genetic architecture of this breed is scant in the literature. (2) Methods: To address this substantial gap, we used whole-genome sequences of 20 Matou goats and compared them with published genomic data of 133 goats of different breeds across China. This comprehensive investigation sought to assess genetic diversity, population structure, and the presence of genomic selection signals. (3) Results: The whole genome of Matou goat populations yielded a substantial catalog of over 19 million single nucleotide polymorphisms (SNPs), primarily distributed within intergenic and intron regions. The phylogenetic tree analysis revealed distinct clades corresponding to each goat population within the dataset. Notably, this analysis positioned Matou goats in a closer genetic affinity with Guizhou White goats, compared to other recognized goat breeds. This observation was corroborated by principal component analysis (PCA) and admixture analysis. Remarkably, Matou goats exhibited diminished genetic diversity and a notable degree of inbreeding, signifying a reduced effective population size. Moreover, the study employed five selective sweep detection methods (including PI, CLR, PI-Ratio, Fst, and XP-EHH) to screen top signal genes associated with critical biological functions, encompassing cardiomyocytes, immunity, coat color, and meat quality. (4) Conclusions: In conclusion, this study significantly advances our understanding of the current genetic landscape and evolutionary dynamics of Matou goats. These findings underscore the importance of concerted efforts in resource conservation and genetic enhancement for this invaluable breed.


Asunto(s)
Cabras , Polimorfismo de Nucleótido Simple , Selección Genética , Secuenciación Completa del Genoma , Animales , Cabras/genética , Secuenciación Completa del Genoma/métodos , Polimorfismo de Nucleótido Simple/genética , Filogenia , China , Cruzamiento , Genoma/genética , Variación Genética
5.
Sci Bull (Beijing) ; 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38945748

RESUMEN

During the past 3000 years, cattle on the Qinghai-Xizang Plateau have developed adaptive phenotypes under the selective pressure of hypoxia, ultraviolet (UV) radiation, and extreme cold. The genetic mechanism underlying this rapid adaptation is not yet well understood. Here, we present whole-genome resequencing data for 258 cattle from 32 cattle breeds/populations, including 89 Tibetan cattle representing eight populations distributed at altitudes ranging from 3400 m to 4300 m. Our genomic analysis revealed that Tibetan cattle exhibited a continuous phylogeographic cline from the East Asian taurine to the South Asian indicine ancestries. We found that recently selected genes in Tibetan cattle were related to body size (HMGA2 and NCAPG) and energy expenditure (DUOXA2). We identified signals of sympatric introgression from yak into Tibetan cattle at different altitudes, covering 0.64%-3.26% of their genomes, which included introgressed genes responsible for hypoxia response (EGLN1), cold adaptation (LRP11), DNA damage repair (LATS1), and UV radiation resistance (GNPAT). We observed that introgressed yak alleles were associated with noncoding variants, including those in present EGLN1. In Tibetan cattle, three yak introgressed SNPs in the EGLN1 promoter region reduced the expression of EGLN1, suggesting that these genomic variants enhance hypoxia tolerance. Taken together, our results indicated complex adaptation processes in Tibetan cattle, where recently selected genes and introgressed yak alleles jointly facilitated rapid adaptation to high-altitude environments.

6.
BMC Genomics ; 25(1): 559, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38840048

RESUMEN

BACKGROUND: The crossbreeding of specialized beef cattle breeds with Chinese indigenous cattle is a common method of genetic improvement. Xia'nan cattle, a crossbreed of Charolais and Nanyang cattle, is China's first specialized beef cattle breed with independent intellectual property rights. After more than two decades of selective breeding, Xia'nan cattle exhibit a robust physique, good environmental adaptability, good tolerance to coarse feed, and high meat production rates. This study analyzed the population genetic structure, genetic diversity, and genomic variations of Xia'nan cattle using whole-genome sequencing data from 30 Xia'nan cattle and 178 published cattle genomic data. RESULT: The ancestry estimating composition analysis showed that the ancestry proportions for Xia'nan cattle were mainly Charolais with a small amount of Nanyang cattle. Through the genetic diversity studies (nucleotide diversity and linkage disequilibrium decay), we found that the genomic diversity of Xia'nan cattle is higher than that of specialized beef cattle breeds in Europe but lower than that of Chinese native cattle. Then, we used four methods to detect genome candidate regions influencing the excellent traits of Xia'nan cattle. Among the detected results, 42 genes (θπ and CLR) and 131 genes (FST and XP-EHH) were detected by two different detection strategies. In addition, we found a region in BTA8 with strong selection signals. Finally, we conducted functional annotation on the detected genes and found that these genes may influence body development (NR6A1), meat quality traits (MCCC1), growth traits (WSCD1, TMEM68, MFN1, NCKAP5), and immunity (IL11RA, CNTFR, CCL27, SLAMF1, SLAMF7, NAA35, and GOLM1). CONCLUSION: We elucidated the genomic features and population structure of Xia'nan cattle and detected some selection signals in genomic regions potentially associated with crucial economic traits in Xia'nan cattle. This research provided a basis for further breeding improvements in Xia'nan cattle and served as a reference for genetic enhancements in other crossbreed cattle.


Asunto(s)
Variación Genética , Selección Genética , Secuenciación Completa del Genoma , Bovinos/genética , Animales , Secuenciación Completa del Genoma/métodos , Desequilibrio de Ligamiento , Genómica/métodos , Polimorfismo de Nucleótido Simple , Genoma , Genética de Población , Cruzamiento , Sitios de Carácter Cuantitativo , Fenotipo
7.
Anim Genet ; 55(4): 511-526, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38726735

RESUMEN

Kashmir cattle, which were kept by local pastoralists for centuries, are exceptionally resilient and adaptive to harsh environments. Despite its significance, the genomic characteristics of this cattle breed remain elusive. This study utilized whole genome sequences of Kashmir cattle (n = 20; newly sequenced) alongside published whole genomes of 32 distinct breeds and seven core cattle populations (n = 135). The analysis identified ~25.87 million biallelic single nucleotide polymorphisms in Kashmir cattle, predominantly in intergenic and intron regions. Population structure analyses revealed distinct clustering patterns of Kashmir cattle with proximity to the South Asian, African and Chinese indicine cattle populations. Genetic diversity analysis of Kashmir cattle demonstrated lower inbreeding and greater nucleotide diversity than analyzed global breeds. Homozygosity runs indicated less consanguineous mating in Kashmir cattle compared with European taurine breeds. Furthermore, six selection sweep detection methods were used within Kashmir cattle and other cattle populations to identify genes associated with vital traits, including immunity (BOLA-DQA5, BOLA-DQB, TNFAIP8L, FCRL4, AOAH, HIF1AN, FBXL3, MPEG1, CDC40, etc.), reproduction (GOLGA4, BRWD1, OSBP2, LEO1 ADCY5, etc.), growth (ADPRHL1, NRG2, TCF12, TMOD4, GBP4, IGF2, RSPO3, SCD, etc.), milk composition (MRPS30 and CSF1) and high-altitude adaptation (EDNRA, ITPR2, AGBL4 and SCG3). These findings provide essential genetic insights into the characteristics and establish the foundation for the scientific conservation and utilization of Kashmir cattle breed.


Asunto(s)
Filogenia , Polimorfismo de Nucleótido Simple , Animales , Bovinos/genética , Secuenciación Completa del Genoma/veterinaria , Variación Genética , Cruzamiento , India
8.
Anim Genet ; 55(4): 575-587, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38806279

RESUMEN

Animal genetic resources are crucial for ensuring global food security. However, in recent years, a noticeable decline in the genetic diversity of livestock has occurred worldwide. This decline is pronounced in developing countries, where the management of these resources is insufficient. In the current study, we performed whole genome sequencing for 20 Wuxue (WX) and five Guizhou White (GW) goats. Additionally, we utilized the published genomes of 131 samples representing five different goat breeds from various regions in China. We investigated and compared the genetic diversity and selection signatures of WX goats. Whole genome sequencing analysis of the WX and GW populations yielded 120 425 063 SNPs, which resided primarily in intergenic and intron regions. Population genetic structure revealed that WX exhibited genetic resemblance to GW, Chengdu Brown, and Jintang Black and significant differentiation from the other goat breeds. In addition, three methods (nucleotide diversity, linkage disequilibrium decay, and runs of homozygosity) showed moderate genetic diversity in WX goats. We used nucleotide diversity and composite likelihood ratio methods to identify within-breed signatures of positive selection in WX goats. A total of 369 genes were identified using both detection methods, including genes related to reproduction (GRID2, ZNF276, TCF25, and SPIRE2), growth (HMGA2 and GJA3), and immunity (IRF3 and SRSF3). Overall, this study explored the adaptability of WX goats, shedding light on their genetic richness and potential to thrive in challenges posed by climatic changes and diseases. Further investigations are warranted to harness these insights to enhance more efficient and sustainable goat breeding initiatives.


Asunto(s)
Cabras , Polimorfismo de Nucleótido Simple , Selección Genética , Secuenciación Completa del Genoma , Animales , Cabras/genética , Secuenciación Completa del Genoma/veterinaria , Cruzamiento , Genética de Población , China , Variación Genética , Desequilibrio de Ligamiento
10.
Front Genet ; 15: 1326828, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38544805

RESUMEN

Xiangdong black goats, indigenous to Hunan Province, China, exhibit remarkable adaptation to challenging environments and possess distinct black coat coloration alongside exceptional meat quality attributes. Despite their significance, comprehensive genomic investigations of this breed have been notably lacking. This study involved a comprehensive examination of population structure, genomic diversity, and regions of selection in Xiangdong black goats utilizing whole-genome sequencing data from 20 samples of this breed and 139 published samples from six other Chinese goat breeds. Our genomic analysis revealed a total of 19,133,125 biallelic single nucleotide polymorphisms (SNPs) within the Xiangdong black goat genome, primarily located in intergenic and intronic regions. Population structure analysis indicated that, compared with Jintang, Guizhou and Chengdu goats, Xiangdong black goats exhibit a reduced level of genetic differentiation but exhibit relatively greater divergence from Jining goats. An examination of genetic diversity within Xiangdong black goats revealed a moderate level of diversity, minimal inbreeding, and a substantial effective population size, which are more reflective of random mating patterns than other Chinese goat breeds. Additionally, we applied four distinct selective sweep methods, namely, the composite likelihood ratio (CLR), fixation index (F ST), θ π ratio and cross-population extended haplotype homozygosity (XP-EHH), to identify genomic regions under positive selection and genes associated with fundamental biological processes. The most prominent candidate genes identified in this study are involved in crucial aspects of goat life, including reproduction (CCSER1, PDGFRB, IFT88, LRP1B, STAG1, and SDCCAG8), immunity (DOCK8, IL1R1, and IL7), lactation and milk production (SPP1, TLL1, and ERBB4), hair growth (CHRM2, SDC1, ITCH, and FGF12), and thermoregulation (PDE10A). In summary, our research contributes valuable insights into the genomic characteristics of the Xiangdong black goat, underscoring its importance and utility in future breeding programs and conservation initiatives within the field of animal breeding and genetics.

11.
Anim Biotechnol ; 35(1): 2314104, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38426908

RESUMEN

Previous researches revealed a copy number variation (CNV) region in the bovine fibroblast growth factor 13 (FGF13) gene. However, its effects remain unknown. This study detected the various copy number types in seven Chinese cattle breeds and analysed their population genetic characteristics and effects on growth traits and transcription levels. Copy number Loss was more frequent in Caoyuan Red cattle and Xianan cattle than in the other breeds. Association analysis between CNV and growth traits of Qinchuan indicated that the CNV was significantly related to chest depth, hip width and hucklebone width (P < 0.05). Additionally, the growth traits of individuals with copy number Loss were significantly inferior to those with copy number Gain or Median (P < 0.05). Besides, we found two splicing isoforms, AS1 and AS2, in FGF13 gene, which resulted from alternative 5' splicing sites of intron 1. These isoforms showed varied expression levels in various tissues. Moreover, CNV was significantly and negatively associated with the mRNA expression of AS1 (r = -0.525, P < 0.05). The CNVs in bovine FGF13 gene negatively regulated growth traits and gene transcription. These observations provide new insights into bovine FGF13 gene, delivering potentially useful information for future Chinese cattle breeding programs.


Asunto(s)
Empalme Alternativo , Variaciones en el Número de Copia de ADN , Factores de Crecimiento de Fibroblastos , Humanos , Animales , Bovinos/genética , Variaciones en el Número de Copia de ADN/genética , Empalme Alternativo/genética , Fenotipo , Isoformas de Proteínas/genética
12.
Anim Genet ; 55(3): 352-361, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38436096

RESUMEN

Local species exhibit distinctive indigenous characteristics while showing unique productive and phenotypic traits. However, the advent of commercialization has posed a substantial threat to the survival of indigenous species. Anxi cattle, an endangered native breed in China, have evolved unique growth and reproductive characteristics in extreme desert and semidesert ecosystems. In this study, we conducted a genomic comparison of 10 Anxi cattle genomes with those of five other global populations/breeds to assess genetic diversity and identify candidate genomic regions in Anxi cattle. Population structure and genetic diversity analyses revealed that Anxi cattle are part of the East Asian cattle clade, exhibiting higher genetic diversity than commercial breeds. Through selective sweep analysis, we identified specific genetic variations linked to the environmental adaptability of Anxi cattle. Notably, we identified several candidate genes, including CERS3 involved in regulating skin permeability and antimicrobial functions, RBFOX2 associated with cardiac development, SLC16A7 participated in the regulation of pancreatic endocrine function, and SPATA3 related to reproduction. Our findings revealed the distinctive genomic features of Anxi cattle in dryland environments, provided invaluable insights for further research and breed preservation, and had important significance for enriching the domestic cattle breeding gene bank.


Asunto(s)
Especies en Peligro de Extinción , Animales , Bovinos/genética , China , Cruzamiento , Variación Genética , Genoma , Adaptación Fisiológica/genética
13.
Anim Genet ; 55(3): 362-376, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38480515

RESUMEN

Qaidam cattle are a typical Chinese native breed inhabiting northwest China. They bear the characteristics of high cold and roughage tolerance, low-oxygen adaptability and good meat quality. To analyze the genetic diversity of Qaidam cattle, 60 samples were sequenced using whole-genome resequencing technology, along with 192 published sets of whole-genome sequencing data of Indian indicine cattle, Chinese indicine cattle, North Chinese cattle breeds, East Asian taurine cattle, Eurasian taurine cattle and European taurine cattle as controls. It was found that Qaidam cattle have rich genetic diversity in Bos taurus, but the degree of inbreeding is also high, which needs further protection. The phylogenetic analysis, principal component analysis and ancestral component analysis showed that Qaidam cattle mainly originated from East Asian taurine cattle. Qaidam cattle had a closer genetic relationship with the North Chinese cattle breeds and the least differentiation from Mongolian cattle. Annotating the selection signals obtained by composite likelihood ratio, nucleotide diversity analysis, integrated haplotype score, genetic differentiation index, genetic diversity ratio and cross-population extended haplotype homozygosity methods, several genes associated with immunity, reproduction, meat, milk, growth and adaptation showed strong selection signals. In general, this study provides genetic evidence for understanding the germplasm characteristics of Qaidam cattle. At the same time, it lays a foundation for the scientific and reasonable protection and utilization of genetic resources of Chinese local cattle breeds, which has great theoretical and practical significance.


Asunto(s)
Variación Genética , Selección Genética , Secuenciación Completa del Genoma , Animales , Bovinos/genética , China , Secuenciación Completa del Genoma/veterinaria , Filogenia , Cruzamiento , Haplotipos
14.
BMC Genomics ; 25(1): 201, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38383305

RESUMEN

To gain a deeper understanding of the metabolic differences within and outside the body, as well as changes in transcription levels following estrus in yaks, we conducted transcriptome and metabolome analyses on female yaks in both estrus and non-estrus states. The metabolome analysis identified 114, 13, and 91 distinct metabolites in urine, blood, and follicular fluid, respectively. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis highlighted an enrichment of pathways related to amino acid and lipid metabolism across all three body fluids. Our transcriptome analysis revealed 122 differentially expressed genes within microRNA (miRNA) and 640 within long non-coding RNA (lncRNA). Functional enrichment analysis of lncRNA and miRNA indicated their involvement in cell signaling, disease resistance, and immunity pathways. We constructed a regulatory network composed of 10 lncRNAs, 4 miRNAs, and 30 mRNAs, based on the targeted regulation relationships of the differentially expressed genes. In conclusion, the accumulation of metabolites such as amino acids, steroids, and organic acids, along with the expression changes of key genes like miR-129 during yak estrus, provide initial insights into the estrus mechanism in yaks.


Asunto(s)
MicroARNs , ARN Largo no Codificante , Animales , Femenino , Bovinos , Líquido Folicular , ARN Largo no Codificante/genética , Perfilación de la Expresión Génica , MicroARNs/genética , MicroARNs/metabolismo , Transcriptoma , Estro/genética , Redes Reguladoras de Genes
15.
Int J Biol Macromol ; 261(Pt 2): 129779, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38290628

RESUMEN

Skeletal muscle growth and development in livestock and poultry play a pivotal role in determining the quality and yield of meat production. However, the mechanisms of myogenesis are remained unclear due to it finely regulated by a complex network of biological macromolecules. In this study, leveraging previous sequencing data, we investigated a differentially expressed circular RNA (circSGCB) present in fetal and adult muscle tissues among various ruminant species, including cattle, goat, and sheep. Our analysis revealed that circSGCB is a single exon circRNA, potentially regulated by an adjacent bovine enhancer. Functional analysis through loss-of-function tests demonstrated that circSGCB exerts inhibitory effects on bovine myoblast proliferation while promoting myocytes generation. Furthermore, we discovered that circSGCB primarily localizes to the cytoplasm, where it functions as a molecular sponge by binding to bta-miR-27a-3p. This interaction releases the mRNAs of KLF3 gene and further activates downstream functional pathways. In vivo, studies provided evidence that up-regulation of KLF3 contributes to muscle regeneration. These findings collectively suggest that circSGCB operates via a competing endogenous RNA (ceRNA) mechanism to regulate KLF3, thereby influencing myogenesis in ruminants and highlights it may as potential molecular targets for enhancing meat production in livestock and poultry industries.


Asunto(s)
MicroARNs , Bovinos , Animales , Ovinos , MicroARNs/genética , MicroARNs/metabolismo , ARN Endógeno Competitivo , ARN Circular/genética , ARN Mensajero/metabolismo , Desarrollo de Músculos/genética , Músculo Esquelético/metabolismo
16.
Anim Biotechnol ; 35(1): 2299944, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38164963

RESUMEN

Cattle are sensitive to temperature fluctuations but adapt well to inclement weather conditions. When environmental temperatures exceed specific thresholds, heat stress becomes a critical concern for cattle. The TRPM2 gene, which resides on cattle chromosome 1 encodes a TRP channel protein, holding a unique capacity to sense temperature changes and facilitate rapid response to avoid heat stress. Here, we utilized the Bovine Genome Variation Database (BGVD) (http://animal.omics.pro/code/index.php/BosVar), and identified a missense mutation site, c.805A > G: p. Met269Val (rs527146862), within the TRPM2 gene. To elucidate the functional assessment of this mutation in temperature adaptation attributes of Chinese cattle, we genotyped 407 samples from 20 distinct breeds representing diverse climatic zones across China. The association analysis incorporates three temperature parameters and revealed compelling insights in terms of allele frequency. Interestingly, the prevalence of the wild-type allele A was notably higher among northern cattle breeds and this trend diminished gradually as observed in southern cattle populations. Conversely, the mutant-type allele G demonstrated a contrasting trend. Moreover, southern cattle exhibited markedly higher frequencies of GG and GA genotypes (P < 0.01). The presence of heterozygous and homozygous mutations appears to confer an enhanced capacity for adaptation to elevated temperatures. These results provide unequivocal correlation evidence between TRPM2 genotypes (AA, GA, GG) and environmental temperature parameters and comprehend the genetic mechanisms governing temperature adaptation in cattle. This provides valuable insights for strategic breed selection across diverse climatic regions, thereby aiding livestock production amid evolving climate challenges.


The TRPM2 gene encodes TRP channel protein that helps animals in combating heat stress. Twenty Chinese local cattle breeds were genotyped, and association analysis was performed. This investigation encompasses the distribution pattern of the missense mutation locus rs527146862 of the TRPM2 gene in southern, northern, and central cattle populations. The results demonstrated a significant relationship between rs527146862 locus and temperature adaptation attributes in Chinese cattle.


Asunto(s)
Canales Catiónicos TRPM , Bovinos/genética , Animales , Temperatura , Canales Catiónicos TRPM/genética , Frecuencia de los Genes , Genotipo , Mutación Missense , Polimorfismo de Nucleótido Simple
17.
Gene ; 896: 148073, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38086453

RESUMEN

CNVs, which are a type of structural variation, make a substantial impact on diverse characteristics in multiple species. Q-PCR and data association analysis were used for STAT5A gene copy in this study. This study aimed to investigate the copy number variation (CNV) of the STAT5A gene in seven Chinese cattle breeds, namely Qinchuan cattle, Xianan cattle, Yunling cattle, Ji'an cattle, Jiaxian Red cattle, Qaidam cattle, and Guyuan yellow cattle. Blood samples were collected for CNV typing, and the correlation between CNV type and growth traits was analyzed using SPSS 23.0 software and ANOVA. The findings revealed variations in the distribution of different copy number types among the different cattle breeds. Furthermore, association analysis demonstrated a positive impact of CNV in the STAT5A gene on cattle growth: in the JX, individuals with duplication types exhibited superior performance in terms of rump length (P < 0.05). Conversely, normal GY cattle demonstrated better body height and abdomen circumference (P < 0.05), while QD cattle exhibited a significant correlation between weight and body length with normal individuals (P < 0.05). Moreover, QC bovine duplication individuals outperformed other types, with copy number variation significantly associated with chest depth, chest width, and body length (P < 0.05). The results validate the correlation between copy number variation (CNV) of the STAT5A gene and growth characteristics in five different cattle breeds, providing a reliable benchmark for the purpose of cattle breeding.


Asunto(s)
Cruzamiento , Variaciones en el Número de Copia de ADN , Factor de Transcripción STAT5 , Animales , Bovinos/genética , Peso Corporal/genética , Fenotipo , Factor de Transcripción STAT5/genética , Proteínas Supresoras de Tumor/genética , Crecimiento/genética
18.
Anim Genet ; 55(1): 140-146, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37994172

RESUMEN

Dezhou donkey is one of the representative local breeds in China, which is mainly divided into two strains: Sanfen and Wutou. There are obvious differences in coat color between the two strains. The former shows light points around the eyes, around the muzzle and under the belly, while the latter is completely solid black. In this study, genome-wide association analysis was performed for the differences in coat color traits between the Sanfen (n = 97) and Wutou (n = 108) strains using a novel donkey 40K liquid chip developed based on GenoBaits technology, to identify genomic regions and causal genes that could explain this variation. We also used FST and The cross-population composite likelihood ratio test (XPCLR) analyses to explore selected regions related to coat color differences. We identified one significant region on chromosome 15, with the most significant SNP located within the agouti signaling protein (ASIP) gene. At the same time, both FST and XPCLR methods detected the same selected region on chromosome 15, and ASIP was the gene with the strongest signal. ASIP and melanocortin 1 receptor (MC1R) control the ratio of eumelanin to pheomelanin through their protein activity. They are deeply involved in the process of melanosome organation and melanogenesis, thus affecting mammals' coat color variation. We used a range of genome-wide approach to identify the genetic basis of coat color variation in Dezhou donkeys. The results provide a supplement to the color variation study in Chinese donkeys at the genome-wide level, and preliminarily verified the reliability of the Molbreeding Donkey No. 1 40K liquid chip.


Asunto(s)
Equidae , Estudio de Asociación del Genoma Completo , Animales , Equidae/genética , Reproducibilidad de los Resultados , Radioisótopos de Potasio
19.
Sci Adv ; 9(50): eadi6857, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38091398

RESUMEN

Domestic yak, cattle, and their hybrids are fundamental to herder survival at high altitudes on the Tibetan Plateau. However, little is known about their history. Bos remains are uncommon in this region, and ancient domestic yak have not been securely identified. To identify Bos taxa and investigate their initial management, we conducted zooarchaeological analyses of 193 Bos specimens and sequenced five nuclear genomes from recently excavated assemblages at Bangga. Morphological data indicated that more cattle than yak were present. Ancient mitochondrial DNA and nuclear genome sequences identified taurine cattle and provided evidence for domestic yak and yak-cattle hybridization ~2500 years ago. Reliance on diverse Bos species and their hybrid has increased cattle adaptation and herder resilience to plateau conditions. Ancient cattle and yak at Bangga were closely related to contemporary livestock, indicating early herder legacies and the continuity of cattle and yak husbandry on the Tibetan Plateau.


Asunto(s)
ADN Mitocondrial , Genoma , Animales , Bovinos , Tibet , ADN Mitocondrial/genética , Secuencia de Bases , Hibridación Genética
20.
Anim Genet ; 54(6): 731-742, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37796667

RESUMEN

Over the years, indigenous cattle have not only played an essential role in securing primary food sources but have also been utilized for labor by humans, making them invaluable genetic resources. The Zhaotong cattle, a native Chinese breed from the Yunnan province, possess excellent meat quality and resistance to heat and humidity. Here we used whole genome sequencing data of 104 animals to delve into the population structure, genomic diversity and potential positive selection signals in Zhaotong cattle. The findings of this study demonstrate that the genetic composition of Zhaotong cattle was primarily derived from Chinese indicine cattle and East Asian cattle. The nucleotide diversity of Zhaotong cattle was only lower than that of Chinese indicine cattle, which was much higher than that of other taurine cattle. Genome-wide selection scans detected a series of positive candidate regions containing multiple key genes related to bone development and metabolism (CA10, GABRG3, GLDN and NOTUM), meat quality traits (ALG8, LINGO2, MYO5B, PRKG1 and GABRB1), immune response (ADA2, BMF, LEF1 and PAK6) and heat resistance (EIF2AK4 and LEF1). In summary, this study supplies essential genetic insights into the genome diversity within Zhaotong cattle and provides a foundational framework for comprehending the genetic basis of indigenous cattle breeds.


Asunto(s)
Genoma , Polimorfismo de Nucleótido Simple , Humanos , Bovinos/genética , Animales , China , Genómica , Fenotipo , Proteínas Serina-Treonina Quinasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...