Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Front Med (Lausanne) ; 11: 1379333, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38618195

RESUMEN

Introduction: Gut dysbiosis may play a pivotal role in the pathogenesis of cirrhosis and the severity of complications. Numerous studies have investigated the probiotics as treatments for cirrhosis. However, there is still a lack of definitive evidence confirming the beneficial effects of probiotics on cirrhosis. Methods: Databases including PubMed, Embase, Web of Science, and the Cochrane Library were systematically searched for randomized controlled trials that compared the effects of probiotic intervention and control treatments, including placebo, no treatment, and active control, on cirrhosis, published from inception to February 2024. Outcomes included hepatic encephalopathy (HE) reversal, safety and tolerability of probiotics, liver function, quality of life, and other cirrhotic-related outcomes. A meta-analysis was conducted to synthesize evidence. Results: Thirty studies were included. The quantitative synthesis results showed that compared with the control group, probiotics significantly reverse minimal hepatic encephalopathy (MHE) (risk ratio [RR] 1.54, 95% confidence interval [CI] 1.03 to 2.32) and improve HE (RR 1.94, 95% CI 1.24 to 3.06). Additionally, probiotics demonstrated higher safety and tolerability by causing a lower incidence of serious adverse events (RR 0.71, 95% CI 0.58 to 0.87). Probiotics could potentially improve liver function by reducing the Model for End-Stage Liver Disease (MELD) scores (standardized mean difference [SMD] -0.57, 95% CI -0.85 to -0.30), and displayed favorable changes in quality of life (SMD 0.51, 95% CI 0.27 to 0.75) and gut flora (SMD 1.67, 95% CI 1.28 to 2.06). Conclusion: This systematic review and meta-analysis offers compelling evidence that probiotics are beneficial for cirrhosis by demonstrating reversal of HE, potential for liver function improvements, enhancements in quality of life, and regulation of gut dysbiosis. Furthermore, the apparent safety profile suggests that probiotics are a promising intervention for treating cirrhosis. Clinical trial registration number: CRD42023478380.

2.
Eur J Clin Invest ; 53(12): e14078, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37593976

RESUMEN

BACKGROUND: There are contradictory effects regarding the effect of NAD+ precursor on blood pressure and inflammation. In order to obtain a better viewpoint from them, this study aimed to comprehensively investigate the effects of NAD+ precursor supplementation on blood pressure, C-reactive protein (CRP) and carotid intima-media thickness (CIMT). METHODS: PubMed/MEDLINE, Web of Science, SCOPUS and Embase databases were searched using standard keywords to identify all controlled trials investigating the effects of NAD+ precursor on blood pressure, CRP and CIMT. Pooled weighted mean difference (WMD) and 95% confidence intervals (95% CI) were achieved by random-effects model analysis for the best estimation of outcomes. RESULTS: Twenty-nine articles (with 8664 participants) were included in this article. Results from meta-analyses of RCTs from random-effects models indicated a significant reduction in systolic (SBP) (weighted mean difference (WMD): -2.54 mmHg, p < .001) and diastolic blood pressure (DBP) (WMD: -2.15 mmHg, p < .001), as well as in CRP (WMD: -.93 mg/L, 95% CI -1.47 to -.40, p < .001) concentrations and CIMT (WMD: -.01 mm, 95% CI -.02 to -.00, p = .005) with the NAD+ precursors supplementation compared with the control group. In addition, a greater effect of supplementation with NAD+ precursors in reducing blood pressure (BP) were observed with the highest dose (≥2 g) and duration of the intervention (>12 weeks), as well as with NA supplementation when compared to NE. CONCLUSIONS: Overall, these findings suggest that NAD+ precursor supplementation might have a beneficial effect on cardiovascular risk factors such as BP, CRP concentration and CIMT.


Asunto(s)
Proteína C-Reactiva , Grosor Intima-Media Carotídeo , Humanos , Presión Sanguínea , Proteína C-Reactiva/metabolismo , NAD/farmacología , Suplementos Dietéticos , Ensayos Clínicos Controlados Aleatorios como Asunto
3.
J Immunol Res ; 2022: 5336931, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36249423

RESUMEN

Klebsiella pneumoniae (K. pneumoniae), especially those with hypervirulence, is becoming a global concern and posing great threat to human health. Studies on individual immune cells or cytokines have partially revealed the function of the host immune defense against K. pneumoniae pulmonary infection. However, systematic immune response against K. pneumoniae has not been fully elucidated. Herein, we report a transcriptome analysis of the lungs from a mouse pneumonia model infected with a newly isolated K. pneumoniae clinical strain YBQ. Total RNA was isolated from the lungs of mice 48 hours post infection to assess transcriptional alteration of genes. Transcriptome data were analyzed with KEGG, GO, and ICEPOP. Results indicated that upregulated transcription level of numerous cytokines and chemokines was coordinated with remarkably activated ribosome and several critical immune signaling pathways, including IL-17 and TNF signaling pathways. Notably, transcription of cysteine cathepsin inhibitor (stfa1, stfa2, and stfa3) and potential cysteine-type endopeptidase inhibitor (cstdc4, cstdc5, and cstdc6) were upregulated. Results of ICEPOP showed neutrophils functions as the most essential cell type against K. pneumoniae infection. Critical gene alterations were further validated by rt-PCR. Our findings provided a global transcriptional perspective on the mechanisms of host defense against K. pneumoniae infection and revealed some unique responding genes.


Asunto(s)
Enfermedades Transmisibles , Infecciones por Klebsiella , Animales , Catepsinas , Quimiocinas/genética , Cisteína/genética , Citocinas/metabolismo , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Humanos , Inmunidad , Interleucina-17/genética , Klebsiella pneumoniae , Ratones , Inhibidores de Proteasas , ARN
4.
Cell Mol Biol (Noisy-le-grand) ; 68(2): 203-207, 2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35869729

RESUMEN

Streptococcus pneumoniae is a common cause of bacterial infections of the respiratory system, middle ear infection, bacteremia, meningitis, and pneumonia, especially in children. Due to the lack of information about the frequency and resistance of Streptococcus pneumoniae to antibiotics, the present study was performed to determine the frequency of carriers of Streptococcus pneumoniae and its microbial resistance in children. For this purpose, the current descriptive cross-sectional study was conducted from November to March 2020 on 554 children aged 2-12 years in kindergartens and schools. This study collected samples with a sterile swab from the nasopharyngeal region, transported them to the laboratory by a transport medium, and then cultured them on an agar culture medium. After isolation, confirmatory tests and antibiotic susceptibility were performed. The results were analyzed using SPSS16 software and interpreted according to Mann Whitney U and Chi-Square Tests. Streptococcus pneumoniaewas found in 15% of samples, and the antibiotic resistance of the isolates to the antibiotics azithromycin, amoxicillin, rifampicin, amoxicillin-clavulanic acid, trimethoprim/Sulfamethoxazole, and ceftriaxone were 63.9%, 56.6%, 41%, 37.3%, 37.3%, and 3.6%, respectively. Also, 31.1% of the isolates were not resistant to any antibiotics. According to the results, excessive use of antibiotics has led to high resistance to azithromycin, amoxicillin, amoxicillin/clavulanic acid, and trimethoprim/Sulfamethoxazole, which indicates an increased risk of refractory infectious diseases. For this reason, it is necessary to adequately educate physicians and the general public about the overuse of antibiotics.


Asunto(s)
Antibacterianos , Streptococcus pneumoniae , Amoxicilina , Combinación Amoxicilina-Clavulanato de Potasio , Antibacterianos/farmacología , Azitromicina , Niño , Estudios Transversales , Humanos , Pruebas de Sensibilidad Microbiana , Streptococcus pneumoniae/efectos de los fármacos , Streptococcus pneumoniae/genética , Sulfametoxazol , Trimetoprim
5.
PLoS Pathog ; 17(7): e1009752, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34288976

RESUMEN

Highly immunogenic exotoxins are used as carrier proteins because they efficiently improve the immunogenicity of polysaccharides. However, their efficiency with protein antigens remains unclear. In the current study, the candidate antigen PA0833 from Pseudomonas aeruginosa was fused to the α-hemolysin mutant HlaH35A from Staphylococcus aureus to form a HlaH35A-PA0833 fusion protein (HPF). Immunization with HPF resulted in increased PA0833-specific antibody titers, higher protective efficacy, and decreased bacterial burden and pro-inflammatory cytokine secretion compared with PA0833 immunization alone. Using fluorescently labeled antigens to track antigen uptake and delivery, we found that HlaH35A fusion significantly improved antigen uptake in injected muscles and antigen delivery to draining lymph nodes. Both in vivo and in vitro studies demonstrated that the increased antigen uptake after immunization with HPF was mainly due to monocyte- and macrophage-dependent macropinocytosis, which was probably the result of HPF binding to ADAM10, the Hla host receptor. Furthermore, a transcriptome analysis showed that several immune signaling pathways were activated by HPF, shedding light on the mechanism whereby HlaH35A fusion improves immunogenicity. Finally, the improvement in immunogenicity by HlaH35A fusion was also confirmed with two other antigens, GlnH from Klebsiella pneumoniae and the model antigen OVA, indicating that HlaH35A could serve as a universal carrier protein to improve the immunogenicity of protein antigens.


Asunto(s)
Antígenos Bacterianos/inmunología , Proteínas Hemolisinas/inmunología , Vacunas/inmunología , Células A549 , Animales , Exotoxinas/inmunología , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Células RAW 264.7 , Proteínas Recombinantes de Fusión/inmunología
6.
Biol Pharm Bull ; 43(10): 1469-1475, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-32779581

RESUMEN

Hospital-acquired infections with Pseudomonas aeruginosa have become a great challenge in caring for critically ill and immunocompromised patients. The cause of high mortality is the presence of multi-drug resistant (MDR) strains, which confers a pressing need for vaccines. Although vaccines against P. aeruginosa have been in development for more than several decades, there is no vaccine for patients at present. In this study, we purified genomic DNA of P. aeruginosa from sera of patients affected, constructed genome-wide library with random recombinants, and screened candidate protein antigens by evaluating their protective effects in vivo. After 13-round of screening, 115 reactive recombinants were obtained, among which 13 antigens showed strong immunoreactivity (more than 10% reaction to PcrV, a well-characterized V-antigen of P. aeruginosa). These 13 antigens were: PpiA, PtsP, OprP, CAZ10_34235, HmuU_2, PcaK, CarAd, RecG, YjiR_5, LigD, KinB, RtcA, and PscF. In vivo studies showed that vaccination with PscF protected against lethal P. aeruginosa challenge, and decreased lung inflammation and injury. A genomic library of P. aeruginosa could be constructed in this way for the first time, which could not only screen candidate antigens but also in a high-throughput way. PscF was considered as an ideal promising vaccine candidate for combating P. aeruginosa infection and was supported for further evaluation of its safety and efficacy.


Asunto(s)
Antígenos Bacterianos/genética , Infección Hospitalaria/prevención & control , Infecciones por Pseudomonas/prevención & control , Vacunas contra la Infección por Pseudomonas/inmunología , Pseudomonas aeruginosa/inmunología , Animales , Anticuerpos Antibacterianos/sangre , Anticuerpos Antibacterianos/inmunología , Antígenos Bacterianos/inmunología , Antígenos Bacterianos/aislamiento & purificación , Infección Hospitalaria/sangre , Infección Hospitalaria/inmunología , Infección Hospitalaria/microbiología , ADN Bacteriano/genética , Modelos Animales de Enfermedad , Femenino , Biblioteca Genómica , Ensayos Analíticos de Alto Rendimiento/métodos , Humanos , Inmunogenicidad Vacunal , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Ratones , Infecciones por Pseudomonas/sangre , Infecciones por Pseudomonas/inmunología , Infecciones por Pseudomonas/microbiología , Vacunas contra la Infección por Pseudomonas/administración & dosificación , Vacunas contra la Infección por Pseudomonas/genética , Pseudomonas aeruginosa/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/aislamiento & purificación , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/genética , Vacunas Sintéticas/inmunología
7.
Mol Biol Rep ; 46(5): 5397-5408, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31342294

RESUMEN

Acinetobacter baumannii (A. baumannii) is an opportunistic pathogen that causes serious infections in the lungs, blood, and brain in critically ill hospital patients, resulting in considerable mortality rates every year. Due to the rapid appearance of multi-drug resistance or even pan-drug resistance isolates, it is becoming more and more difficult to cure A. baumannii infection by traditional antibiotic treatment, alternative strategies are urgently required to combat A. baumannii infection. In this study, we developed a DNA vaccine encoding two antigens from A. baumannii, OmpA and Pal, and the immunogenicity and protective efficacy was further evaluated. The results showed that the DNA vaccine exhibited significant immune protective efficacy against acute A. baumannii infection in a mouse pneumonia model, and cross protective efficacy was observed when immunized mice were challenged with clinical strains of A. baumannii. DNA vaccine immunization induced high level of humoral response and a mixed Th1/Th2/Th17 cellular response, which protect against lethal bacterial challenges by decreased bacterial loads and pathology in the lungs, and reduced level of inflammatory cytokines expression and inflammatory cell infiltration in BALF. These results demonstrated that it is possible to prevent A. baumannii infection by DNA vaccine and both OmpA and Pal could be serve as promising candidate antigens.


Asunto(s)
Acinetobacter baumannii/genética , Neumonía/prevención & control , Vacunas de ADN/farmacología , Acinetobacter baumannii/patogenicidad , Animales , Antibacterianos/metabolismo , Carga Bacteriana , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/inmunología , Vacunas Bacterianas/inmunología , Modelos Animales de Enfermedad , Femenino , Inmunización/métodos , Pulmón/patología , Ratones , Ratones Endogámicos C57BL , Infecciones del Sistema Respiratorio/microbiología , Infecciones del Sistema Respiratorio/prevención & control , Vacunación/métodos , Vacunas de ADN/metabolismo
8.
Front Microbiol ; 9: 1062, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29875759

RESUMEN

Pseudomonas aeruginosa is a formidable pathogen that causes infections with high mortality rates. Because of its ability to form biofilms and rapidly acquire resistance to many first-line antibiotics, P. aeruginosa-related infections are typically difficult to cure by traditional antibiotic treatment regimes. Thus, new strategies to prevent and treat such infections are urgently required. PA0833 is a newly identified protective antigen of P. aeruginosa that was identified in a screen using a reverse vaccine strategy in our laboratory. In this study, we further confirmed its protective efficacy in murine sepsis and pneumonia models. Immunization with PA0833 induced strong immune responses and resulted in reduced bacterial loads; decreased pathology, inflammatory cytokine expression and inflammatory cell infiltration; and improved survival. Furthermore, PA0833 was identified as an OmpA C-like protein by bioinformatics analysis and biochemical characterization and shown to contribute to bacterial environmental stress resistance and virulence. These results demonstrate that PA0833 is an OmpA C-like protein that induces a protective immune response in mice, indicating that PA0833 is a promising antigen for vaccine development.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA