Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Immunopharmacol Immunotoxicol ; 45(1): 52-60, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35947042

RESUMEN

BACKGROUND: The present study aimed to explore the impact of sulforaphane on the growth of sSCC cells, and the activation of miR-199a-5p/Sirt1 and CD44ICD signaling pathways. METHODS: Cell viability, count, apoptosis, and invasion assays were performed in the sSCC cell line (SCC-13) in which miR-199a-5p was over-expressed or under-expressed. The expression levels of miR-199a-5p, Sirt1 and CD44ICD mRNA were measured by quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS: Sulforaphane significantly inhibited the cell growth and invasion of SCC-13 cells, and dramatically induced cell apoptosis. Additionally, sulforaphane also greatly increased miR-199a-5p expression and suppressed Sirt1 and CD44ICD mRNA levels. Moreover, miR-199a-5p overexpression considerably down-regulated the expressions of Sirt1 and CD44ICD mRNA, and promoted the ability of sulforaphane to represses cell growth and invasion, and to induce cell apoptosis. However, miR-199a-5p underexpression has the opposite effects. CONCLUSIONS: Sulforaphane appears to inhibit sCC progression by impacting its growth and invasion ability, and regulates miR-199a-5p/Sirt1 and CD44ICD signaling pathways, and may be utilized to develop a curative approach for sSCC.


Asunto(s)
Carcinoma de Células Escamosas , MicroARNs , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Sirtuina 1/genética , Sirtuina 1/metabolismo , Transducción de Señal , Proliferación Celular , Carcinoma de Células Escamosas/tratamiento farmacológico , ARN Mensajero , Línea Celular Tumoral
2.
Onco Targets Ther ; 13: 4617-4625, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32547092

RESUMEN

OBJECTIVE: The SAM- and SH3-domain containing 1 gene (SASH1) has been considered as a tumor suppressor in some cancers. Nevertheless, the effect of SASH1 on the proliferation and invasion of human skin squamous cell carcinoma (cSCC) remains poorly understood. Therefore, the purpose of the present study was to observe the potential role of SASH1 in cSCC and investigate its underlying mechanisms. METHODS: The overexpression of SASH1 was constructed by transfecting the pcDNA3.1/SASH1 vector into SCL-1 and A431 cells, and SASH1 knockdown was generated by transfecting the SASH1 siRNA into cSCC cells. Then, cell proliferation, invasion, apoptosis, and Akt pathway were observed. RESULTS: The expression levels of SASH1 mRNA and protein were greatly reduced in cSCC cells. The overexpression of SASH1 inhibited the viability and invasion of cSCC cells, while its knockdown induced the viability and invasion of cSCC cells. The overexpression of SASH1 also suppressed the expression levels of p-Akt and its target genes, including cyclin D1, Bcl-2, and metal matrix proteinase 2(MMP-2). By contrast, SASH1 knockdown exerted the opposite role. Furthermore, inhibition of Akt obviously decreased the inducible effect of cSCC knockdown on the proliferation and invasion of cSCC cells. CONCLUSION: Overall, these results found that SASH1 inhibits the proliferation and invasion of cSCC cells via suppressing Akt cascade, indicating a tumor inhibitory effect of SASH1 in cSCC cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...