Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Curr Med Sci ; 43(6): 1133-1150, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38015361

RESUMEN

OBJECTIVE: Pseudogenes are initially regarded as nonfunctional genomic sequences, but some pseudogenes regulate tumor initiation and progression by interacting with other genes to modulate their transcriptional activities. Olfactory receptor family 7 subfamily E member 47 pseudogene (OR7E47P) is expressed broadly in lung tissues and has been identified as a positive regulator in the tumor microenvironment (TME) of lung adenocarcinoma (LUAD). This study aimed to elucidate the correlation between OR7E47P and tumor immunity in lung squamous cell carcinoma (LUSC). METHODS: Clinical and molecular information from The Cancer Genome Atlas (TCGA) LUSC cohort was used to identify OR7E47P-related immune genes (ORIGs) by weighted gene correlation network analysis (WGCNA). Based on the ORIGs, 2 OR7E47P clusters were identified using non-negative matrix factorization (NMF) clustering, and the stability of the clustering was tested by an extreme gradient boosting classifier (XGBoost). LASSO-Cox and stepwise regressions were applied to further select prognostic ORIGs and to construct a predictive model (ORPScore) for immunotherapy. The Botling cohorts and 8 immunotherapy cohorts (the Samstein, Braun, Jung, Gide, IMvigor210, Lauss, Van Allen, and Cho cohorts) were included as independent validation cohorts. RESULTS: OR7E47P expression was positively correlated with immune cell infiltration and enrichment of immune-related pathways in LUSC. A total of 57 ORIGs were identified to classify the patients into 2 OR7E47P clusters (Cluster 1 and Cluster 2) with distinct immune, mutation, and stromal programs. Compared to Cluster 1, Cluster 2 had more infiltration by immune and stromal cells, lower mutation rates of driver genes, and higher expression of immune-related proteins. The clustering performed well in the internal and 5 external validation cohorts. Based on the 7 ORIGs (HOPX, STX2, WFS, DUSP22, SLFN13, GGCT, and CCSER2), the ORPScore was constructed to predict the prognosis and the treatment response. In addition, the ORPScore was a better prognostic factor and correlated positively with the immunotherapeutic response in cancer patients. The area under the curve values ranged from 0.584 to 0.805 in the 6 independent immunotherapy cohorts. CONCLUSION: Our study suggests a significant correlation between OR7E47P and TME modulation in LUSC. ORIGs can be applied to molecularly stratify patients, and the ORPScore may serve as a biomarker for clinical decision-making regarding individualized prognostication and immunotherapy.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Humanos , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/terapia , Pulmón , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , Seudogenes/genética , Microambiente Tumoral/genética
2.
Theranostics ; 13(14): 4885-4904, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37771780

RESUMEN

Rationale: Mesoscopic visualization of the main anatomical structures of the whole kidney in vivo plays an important role in the pathological diagnosis and exploration of the etiology of hydronephrosis. However, traditional imaging methods cannot achieve whole-kidney imaging with micron resolution under conditions representing in vivo perfusion. Methods: We used in vivo cryofixation (IVCF) to fix acute obstructive hydronephrosis (unilateral ureteral obstruction, UUO), chronic spontaneous hydronephrosis (db/db mice), and their control mouse kidneys for cryo-micro-optical sectioning tomography (cryo-MOST) autofluorescence imaging. We quantitatively assessed the kidney-wide pathological changes in the main anatomical structures, including hydronephrosis, renal subregions, arteries, veins, glomeruli, renal tubules, and peritubular functional capillaries. Results: By comparison with microcomputed tomography imaging, we confirmed that IVCF can maintain the status of the kidney in vivo. Cryo-MOST autofluorescence imaging can display the main renal anatomical structures with a cellular resolution without contrast agents. The hydronephrosis volume reached 26.11 ± 6.00 mm3 and 13.01 ± 3.74 mm3 in 3 days after UUO and in 15-week-old db/db mouse kidneys, respectively. The volume of the cortex and inner stripe of the outer medulla (ISOM) increased while that of the inner medulla (IM) decreased in UUO mouse kidneys. Db/db mice also showed an increase in the volume of the cortex and ISOM volume but no atrophy in the IM. The diameter of the proximal convoluted tubule and proximal straight tubule increased in both UUO and db/db mouse kidneys, indicating that proximal tubules were damaged. However, some renal tubules showed abnormal central bulge highlighting in the UUO mice, but the morphology of renal tubules was normal in the db/db mice, suggesting differences in the pathology and severity of hydronephrosis between the two models. UUO mouse kidneys also showed vascular damage, including segmental artery and vein atrophy and arcuate vein dilation, and the density of peritubular functional capillaries in the cortex and IM was reduced by 37.2% and 49.5%, respectively, suggesting renal hypoxia. In contrast, db/db mouse kidneys showed a normal vascular morphology and peritubular functional capillary density. Finally, we found that the db/db mice displayed vesicoureteral reflux and bladder overactivity, which may be the cause of hydronephrosis formation. Conclusions: We observed and compared main renal structural changes in hydronephrosis under conditions representing in vivo perfusion in UUO, db/db, and control mice through cryo-MOST autofluorescence imaging. The results indicate that cryo-MOST with IVCF can serve as a simple and powerful tool to quantitatively evaluate the in vivo pathological changes in three dimensions, especially the distribution of body fluids in the whole kidney. This method is potentially applicable to the three-dimensional visualization of other tissues, organs, and even the whole body, which may provide new insights into pathological changes in diseases.


Asunto(s)
Hidronefrosis , Tomografía Óptica , Obstrucción Ureteral , Ratones , Animales , Corteza Renal/irrigación sanguínea , Corteza Renal/patología , Microtomografía por Rayos X , Imagenología Tridimensional , Riñón/patología , Hidronefrosis/diagnóstico por imagen , Hidronefrosis/etiología , Hidronefrosis/patología
3.
Sensors (Basel) ; 23(15)2023 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-37571492

RESUMEN

Driving behavior recognition can provide an important reference for the intelligent vehicle industry and probe vehicle-based traffic estimation. The identification of driving behavior using mobile sensing techniques such as smartphone- and vehicle-mounted terminals has gained significant attention in recent years. The present work proposed the monitoring of longitudinal driving behavior using a machine learning approach with the support of an on-board unit (OBU). Specifically, based on velocity, three-axis acceleration and three-axis angular velocity data were collected by a mobile vehicle terminal OBU; through the process of data preprocessing and feature extraction, seven machine learning algorithms, including support vector machine (SVM), random forest (RF), k-nearest neighbor algorithm (KNN), logistic regression (LR), BP neural network (BPNN), decision tree (DT), and the Naive Bayes (NB), were applied to implement the classification and monitoring of the longitudinal driving behavior of probe vehicles. The results show that the three classifiers SVM, RF and DT achieved good performances in identifying different longitudinal driving behaviors. The outcome of the present work could contribute to the fields of traffic management and traffic safety, providing important support for the realization of intelligent transport systems and the improvement of driving safety.

4.
Curr Med Sci ; 43(4): 631-646, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37558863

RESUMEN

Cancer treatment has evolved rapidly due to major advances in tumor immunity research. However, due to the complexity, heterogeneity, and immunosuppressive microenvironment of tumors, the overall efficacy of immunotherapy is only 20%. In recent years, nanoparticles have attracted more attention in the field of cancer immunotherapy because of their remarkable advantages in biocompatibility, precise targeting, and controlled drug delivery. However, the clinical application of nanomedicine also faces many problems concerning biological safety, and the synergistic mechanism of nano-drugs with immunity remains to be elucidated. Our study summarizes the functional characteristics and regulatory mechanisms of nanoparticles in the cancer immune microenvironment and how nanoparticles activate and long-term stimulate innate immunity and adaptive immunity. Finally, the current problems and future development trends regarding the application of nanoparticles are fully discussed and prospected to promote the transformation and application of nanomedicine used in cancer treatment.


Asunto(s)
Neoplasias , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Inmunoterapia , Nanomedicina , Sistemas de Liberación de Medicamentos , Inmunidad Adaptativa , Microambiente Tumoral
5.
Am J Transl Res ; 15(7): 4487-4503, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37560208

RESUMEN

BACKGROUND: Obstructive sleep apnea (OSA) and osteoarthritis (OA) are highly prevalent and seriously affect the patient's quality of life. Patients with OSA have a high incidence of OA, however, the underlying mechanism remains unclear. Here, we investigated the molecular link between OSA and OA via bioinformatics analysis and experimental validation. METHODS: We downloaded a peripheral blood monocyte microarray profile (GSE75097) for patients with OSA and two synovial microarray profiles (GSE55235 and GSE55457) for patients with OA from the Gene Expression Omnibus database. We identified OSA-associated differentially expressed genes (OSA-DEGs) in patients with OA. Additionally, we constructed protein-protein interaction networks to identify the key genes involved in OA. Immunohistochemistry was performed to verify the expression of key genes in OA rat models. RNA interference assay was performed to validate the effects of key genes on synovial cells. Gene-miRNA, gene-transcription factor, and gene-drug networks were constructed to predict the regulatory molecules and drugs for OA. RESULTS: Fifteen OSA-DEGs screened using the threshold criteria were enriched in the tumor necrosis factor (TNF) pathway. Combining the 12 algorithms of CytoHubba, we identified JUNB, JUN, dual specificity phosphatase 1 (DUSP1), and TNF-alpha-induced protein 3 (TNFAIP3) as the key OSA-DEGs involved in OA development. Immunohistochemistry and quantitative polymerase chain reaction revealed that these key genes were downregulated in the OA synovium, promoting TNF-α expression. Therefore, OSA-DEGs, JUN, JUNB, DUSP1, and TNFAIP3 function in OA by increasing TNF-α expression. Our findings provide insights on the mechanisms underlying the effects of OSA on OA.

6.
J Inflamm Res ; 16: 1711-1725, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37155429

RESUMEN

Purpose: Analyzed the expression characteristics of pyroptosis-related genes (PRGs) in peripheral blood mononuclear cells (PBMCs) of gout patients by microarray, and constructed ceRNA network to explore the molecular mechanism of RNA-mediated pyroptosis regulation. Patients and Methods: Human mRNA, lncRNA, circRNA microarray data were used to identify differentially expressed in PBMCs from patients with primary gout and healthy controls. Differential PRGs in PBMCs of gout patients identified by Genecard database and mRNA microarray data. GO and KEGG enrichment analyses of these genes were then conducted. Protein-protein interaction networks and cytoHubba were used to identify hub genes. Combining the lncRNA and circRNA microarray data, a ceRNA network was constructed by Cytoscape to screen out key non-coding RNA molecules that can regulate target PRGs. Finally, the relative expression levels of target miRNA and circRNA in 60 gout patients and 40 healthy subjects were detected by qRT-PCR. Results: The results revealed 30 differentially expressed PRGs. GO and KEGG analysis of these genes were mainly concentrated in the production and regulation of cytokines, NOD-like receptor signaling pathway and so on. Nine hub genes were screened by PPI network, including IL1B, DDX3X, NLRP3, NLRP9, AIM2, CASP8, P2XR7, CARD8 and IFI16. The has_circRNA_102906\hsa_circRNA_102910\hsa_circRNA_102911-hsa-miR-129-5p-DDX3X\NLRP3\NLRP9 regulatory network was constructed. The expression of has_circRNA_102906, hsa_circRNA_102910, hsa_circRNA_102911 were up-regulated and hsa-miR-129-5p down-regulated in PBMCs of gout patients. The relative expression of hsa_circRNA_102911 was positively correlated with clinical inflammatory indicators associated with gout, and the area under the curve of hsa_circRNA_102911 for gout diagnosis was 0.85 (95% CI: 0.775-0.925; p < 0.001). Conclusion: There are several differentially expressed PRGs in PBMCs of gout patients, which are involved in the regulation of gout inflammation through multiple pathways. hsa_circRNA_102911-hsa-miR-129-5p-DDX3X\NLRP3\NLRP9 may be the key regulatory pathway for pyroptosis to regulate gout inflammation, and hsa_circRNA_102911 may be a potential biomarker for the diagnosis of primary gout.

8.
Dalton Trans ; 52(6): 1761-1767, 2023 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-36655823

RESUMEN

Photocatalytic reduction of carbon dioxide into useful feedstocks has attracted increasing attention. In this study, a fully conjugated COF material COF-TMT-A with the main structure containing an alkyne group and triazine part was synthesized using sp2-carbon-carbon double bond (CC) linked COF as a research target. The prepared COF materials were characterized in detail by FT-IR, PXRD, and 13C solid-state NMR. The introduction of an alkyne group not only enhanced the conjugated π-electron leaving domain but also optimized the electronic band structure and significantly improved the photocatalytic activity. The selectivity for the product HCOO was as high as 99%. A 10 h photocatalytic CO2 reduction experiment was carried out, and COF-TMT-A showed a significantly higher HCOO- yield of about 43 µmol compared with COF-701 and the ligand.

9.
J Infect ; 86(1): 47-59, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36334726

RESUMEN

Toxoplasma gondii is a widespread parasitic protozoan causing toxoplasmosis including pulmonary toxoplasmosis. As the first line of host defense, airway epithelial cells play critical roles in orchestrating pulmonary innate immunity. However, the mechanism underlying the airway inflammation induced by the T. gondii infection remains largely unclear. This study demonstrated that after infection with T. gondii, the major anion channel located in the apical membranes of airway epithelial cells, cystic fibrosis transmembrane conductance regulator (CFTR), was degraded by the parasite-secreted cysteine proteases. The intracellular Cl- concentration ([Cl-]i) was consequently elevated, leading to activation of nuclear factor-κB (NF-κB) signaling via serum/glucocorticoid regulated kinase 1. Furthermore, the heightened [Cl-]i and activated NF-κB signaling could be sustained in a positive feedback regulatory manner resulting from decreased intracellular cAMP level through NF-κB-mediated up-regulation of phosphodiesterase 4. Conversely, the sulfur-containing compound allicin conferred anti-inflammatory effects on pulmonary toxoplasmosis by decreasing [Cl-]i via activation of CFTR. These results suggest that the intracellular Cl- dynamically modulated by T. gondii mediates sustained airway inflammation, which provides a potential therapeutic target against pulmonary toxoplasmosis.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística , Epitelio , Toxoplasmosis , Humanos , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Epitelio/metabolismo , Inflamación , Pulmón , FN-kappa B/metabolismo , Toxoplasma
10.
Front Pharmacol ; 13: 890284, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35784719

RESUMEN

Airway epithelium plays critical roles in regulating airway surface liquid (ASL), the alteration of which causes mucus stasis symptoms. Allicin is a compound released from garlic and harbors the capacity of lung-protection. However, the potential regulatory effects of allicin on airway epithelium remain elusive. This study aimed to investigate the effects of allicin on ion transport across airway epithelium and evaluate its potential as an expectorant. Application of allicin induced Cl- secretion across airway epithelium in a concentration-dependent manner. Blockade of cystic fibrosis transmembrane conductance regulator (CFTR) or inhibition of adenylate cyclase-cAMP signaling pathway attenuated allicin-induced Cl- secretion in airway epithelial cells. The in vivo study showed that inhaled allicin significantly increased the ASL secretion in mice. These results suggest that allicin induces Cl- and fluid secretion across airway epithelium via activation of CFTR, which might provide therapeutic strategies for the treatment of chronic pulmonary diseases associated with ASL dehydration.

11.
Signal Transduct Target Ther ; 7(1): 255, 2022 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-35896532

RESUMEN

SARS-CoV-2, the culprit pathogen of COVID-19, elicits prominent immune responses and cytokine storms. Intracellular Cl- is a crucial regulator of host defense, whereas the role of Cl- signaling pathway in modulating pulmonary inflammation associated with SARS-CoV-2 infection remains unclear. By using human respiratory epithelial cell lines, primary cultured human airway epithelial cells, and murine models of viral structural protein stimulation and SARS-CoV-2 direct challenge, we demonstrated that SARS-CoV-2 nucleocapsid (N) protein could interact with Smad3, which downregulated cystic fibrosis transmembrane conductance regulator (CFTR) expression via microRNA-145. The intracellular Cl- concentration ([Cl-]i) was raised, resulting in phosphorylation of serum glucocorticoid regulated kinase 1 (SGK1) and robust inflammatory responses. Inhibition or knockout of SGK1 abrogated the N protein-elicited airway inflammation. Moreover, N protein promoted a sustained elevation of [Cl-]i by depleting intracellular cAMP via upregulation of phosphodiesterase 4 (PDE4). Rolipram, a selective PDE4 inhibitor, countered airway inflammation by reducing [Cl-]i. Our findings suggested that Cl- acted as the crucial pathological second messenger mediating the inflammatory responses after SARS-CoV-2 infection. Targeting the Cl- signaling pathway might be a novel therapeutic strategy for COVID-19.


Asunto(s)
COVID-19 , Cloro/metabolismo , MicroARNs , Animales , COVID-19/genética , Humanos , Inflamación/patología , Ratones , MicroARNs/metabolismo , Proteínas de la Nucleocápside , Mucosa Respiratoria/metabolismo , Mucosa Respiratoria/patología , SARS-CoV-2
12.
Biol Reprod ; 107(4): 1026-1034, 2022 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-35774023

RESUMEN

G protein-coupled estrogen receptor (GPER), a seven-transmembrane G protein-coupled receptor, mediates the rapid pre-genomic signaling actions of estrogen and derivatives thereof. The expression of GPER is extensive in mammal male reproductive system. However, the functional role of GPER in mouse sperm has not yet been well recognized. This study revealed that GPER was expressed at the acrosome and the mid-flagellum of the mouse sperm. The endogenous GPER ligand 17ß-estradiol and the selective GPER agonist G1 increased intracellular Ca2+ concentration ([Ca2+]i) in mouse sperm, which could be abolished by G15, an antagonist of GPER. In addition, the G1-stimulated Ca2+ response was attenuated by interference with the phospholipase C (PLC) signaling pathways or by blocking the cation channel of sperm (CatSper). Chlortetracycline staining assay showed that the activation of GPER increased the incidence of acrosome-reacted sperm. Conclusively, GPER was located at the acrosome and mid-flagellum of the mouse sperm. Activation of GPER triggered the elevation of [Ca2+]i through PLC-dependent Ca2+ mobilization and CatSper-mediated Ca2+ influx, which promoted the acrosome reaction of mouse sperm.


Asunto(s)
Reacción Acrosómica , Clortetraciclina , Animales , Calcio/metabolismo , Clortetraciclina/metabolismo , Estradiol/metabolismo , Estrógenos/metabolismo , Proteínas de Unión al GTP/metabolismo , Ligandos , Masculino , Mamíferos/metabolismo , Ratones , Receptores de Estrógenos/genética , Receptores de Estrógenos/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Semen/metabolismo , Espermatozoides/metabolismo , Fosfolipasas de Tipo C/metabolismo
13.
Eur J Dermatol ; 32(6): 818-820, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36856404
14.
Sensors (Basel) ; 21(16)2021 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-34451061

RESUMEN

The advantages of UAV video in flexibility, traceability, easy-operation, and abundant information make it a popular and powerful aerial tool applied in traffic monitoring in recent years. This paper proposed a systematic approach to detect and track vehicles based on the YOLO v3 model and the deep SORT algorithm for further extracting key traffic parameters. A field experiment was implemented to provide data for model training and validation to ensure the accuracy of the proposed approach. In the experiment, 5400 frame images and 1192 speed points were collected from two test vehicles equipped with high-precision GNSS-RTK and onboard OBD after completion of seven experimental groups with a different height (150 m to 500 m) and operating speed (40 km/h to 90 km/h). The results indicate that the proposed approach exhibits strong robustness and reliability, due to the 90.88% accuracy of object detection and 98.9% precision of tracking vehicle. Moreover, the absolute and relative error of extracted speed falls within ±3 km/h and 2%, respectively. The overall accuracy of the extracted parameters reaches up to 98%.

16.
J Neuroinflammation ; 18(1): 25, 2021 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-33461586

RESUMEN

Through considerable effort in research and clinical studies, the immune system has been identified as a participant in the onset and progression of brain injury after ischaemic stroke. Due to the involvement of all types of immune cells, the roles of the immune system in stroke pathology and associated effects are complicated. Past research concentrated on the functions of monocytes and neutrophils in the pathogenesis of ischaemic stroke and tried to demonstrate the mechanisms of tissue injury and protection involving these immune cells. Within the past several years, an increasing number of studies have elucidated the vital functions of T cells in the innate and adaptive immune responses in both the acute and chronic phases of ischaemic stroke. Recently, the phenotypes of T cells with proinflammatory or anti-inflammatory function have been demonstrated in detail. T cells with distinctive phenotypes can also influence cerebral inflammation through various pathways, such as regulating the immune response, interacting with brain-resident immune cells and modulating neurogenesis and angiogenesis during different phases following stroke. In view of the limited treatment options available following stroke other than tissue plasminogen activator therapy, understanding the function of immune responses, especially T cell responses, in the post-stroke recovery period can provide a new therapeutic direction. Here, we discuss the different functions and temporal evolution of T cells with different phenotypes during the acute and chronic phases of ischaemic stroke. We suggest that modulating the balance between the proinflammatory and anti-inflammatory functions of T cells with distinct phenotypes may become a potential therapeutic approach that reduces the mortality and improves the functional outcomes and prognosis of patients suffering from ischaemic stroke.


Asunto(s)
Encéfalo/inmunología , Inflamación/inmunología , Accidente Cerebrovascular Isquémico/inmunología , Linfocitos T Colaboradores-Inductores/inmunología , Animales , Encéfalo/patología , Humanos , Accidente Cerebrovascular Isquémico/patología
17.
Nanoscale ; 13(2): 1220-1230, 2021 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-33404038

RESUMEN

Even though immunological checkpoint inhibitors have demonstrated a potent anti-tumor effect in clinical practice, the low immunogenicity of the majority of tumors still results in a lower response rate and a higher resistance to mono-immunotherapy. Recent studies revealed that immunogenic cell death (ICD) augments T cell responses against some cancers, thus indicating that this combination therapy may further improve the anti-tumor immunity produced by anti-PD-1/PD-L1. Herein a robust synergetic strategy is reported to integrate the activation of necroptotic cell death and the subsequent using of immune checkpoint inhibitors. Liposomes have good biocompatibility and are widely used as drug carriers. Using liposomes as TNF-α-loaded nanoplatforms achieves in vivo tumor targeting and long-term retention in the tumor microenvironment. Tumor cells treated with TNF-α-loaded liposomes exhibited the hallmarks of ICD including the release of high mobility group box 1 (HMGB1) and lactate dehydrogenase (LDH). Additionally, the tumor cell necrosis caused by TNF-α induces the in situ release of tumor-specific antigens, thus increasing the dendritic cell (DC) activation and T cell infiltration when combined with the checkpoint blockade therapy. Collectively, significant tumor reduction is accomplishable by this synergetic strategy, in which TNF-α-loaded liposomes convert the tumor cell into an endogenous vaccine and improve the anti-tumor immunity of anti-PD-1/PD-L1.


Asunto(s)
Inmunoterapia , Neoplasias , Muerte Celular , Humanos , Neoplasias/tratamiento farmacológico , Receptor de Muerte Celular Programada 1 , Microambiente Tumoral
18.
Gene ; 766: 145156, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-32949696

RESUMEN

Plant Glycogen Synthase Kinase 3 (GSK3)/SHAGGY-like kinase (GSK) proteins play important roles in modulating growth, development, and stress responses in several plant species. However, little is known about the members of the potato GSK (StGSK) family. Here, nine StGSK genes were identified and phylogenetically grouped into four clades. Gene duplication analysis revealed that segmental duplication contributed to the expansion of the StGSK family. Gene structure and motif pattern analyses indicated that similar exon/intron and motif organizations were found in StGSKs from the same clade. Conserved motif and kinase activity analyses indicated that the StGSKs encode active protein kinases, and they were shown to be distributed throughout whole cells. Cis-acting regulatory element analysis revealed the presence of many growth-, hormone-, and stress-responsive elements within the promoter regions of the StGSKs, which is consistent with their expression in different organs, and their altered expression in response to hormone and stress treatments. Association network analysis indicated that various proteins, including two confirmed BES1 family transcription factors, potentially interact with StGSKs. Overexpression of StSK21 provides enhanced sensitivity to salt stress in Arabidopsis thaliana plants. Overall, these results reveal that StGSK proteins are active protein kinases with purported functions in regulating growth, development, and stress responses.


Asunto(s)
Regulación de la Expresión Génica de las Plantas/genética , Genes de Plantas/genética , Familia de Multigenes/genética , Proteínas de Plantas/genética , Estrés Salino/genética , Solanum tuberosum/genética , Estrés Fisiológico/genética , Arabidopsis/genética , Cromosomas de las Plantas/genética , Duplicación de Gen/genética , Perfilación de la Expresión Génica/métodos , Estudio de Asociación del Genoma Completo/métodos , Filogenia , Reguladores del Crecimiento de las Plantas/genética , Factores de Transcripción/genética
19.
J Nanosci Nanotechnol ; 20(12): 7495-7505, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-32711619

RESUMEN

With unique 2D nanostructures and excellent properties, graphene and its derivatives are a class of advanced nanosized reinforcements for cementitious materials. Sulfonated graphene (SG), one of the most important modified graphene materials, possesses sulfonate groups on the surface and significantly improves the mechanical and thermal properties of cement-based composites. It is important to investigate the influence of SG on cement-based materials as it is a prerequisite for practical applications. Herein, SG was prepared and introduced into cement paste to investigate its influence on the rheological properties of cement paste. With the increased addition of SG, a stable slurry was gradually obtained with low fluidity and high rheological parameters. The mechanism of the SG effect on the rheological properties of cement paste was also illustrated. Because of the high specific surface area and sulfonate groups of SG nanosheets, a large amount of flocculated structure was created by the complexing effect, chemical interaction, physical interaction and mechanical interlocking between SG and hydrated/unhydrated cement particles. Furthermore, polycarboxylate ether (PCE) superplasticizer was introduced to ensure fluidity and transportability in the practical application of SG. The results in this work lay a foundation for the practical application of modified graphene in cementitious materials.

20.
Nano Lett ; 19(11): 8049-8058, 2019 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-31558023

RESUMEN

Pyroptosis is a lytic and inflammatory form of programmed cell death and could be induced by chemotherapy drugs via caspase-3 mediation. However, the key protein gasdermin E (GSDME, translated by the DFNA5 gene) during the caspase-3-mediated pyroptosis process is absent in most tumor cells because of the hypermethylation of DFNA5 (deafness autosomal dominant 5) gene. Here, we develop a strategy of combining decitabine (DAC) with chemotherapy nanodrugs to trigger pyroptosis of tumor cells by epigenetics, further enhancing the immunological effect of chemotherapy. DAC is pre-performed with specific tumor-bearing mice for demethylation of the DFNA5 gene in tumor cells. Subsequently, a commonly used tumor-targeting nanoliposome loaded with cisplatin (LipoDDP) is used to administrate drugs for activating the caspase-3 pathway in tumor cells and trigger pyroptosis. Experiments demonstrate that the reversal of GSDME silencing in tumor cells is achieved and facilitates the occurrence of pyroptosis. According to the anti-tumor activities, anti-metastasis results, and inhibition of recurrence, this pyroptosis-based chemotherapy strategy enhances immunological effects of chemotherapy and also provides an important insight into tumor immunotherapy.


Asunto(s)
Antimetabolitos Antineoplásicos/uso terapéutico , Cisplatino/uso terapéutico , Decitabina/uso terapéutico , Epigénesis Genética/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Piroptosis/efectos de los fármacos , Animales , Antimetabolitos Antineoplásicos/administración & dosificación , Línea Celular Tumoral , Cisplatino/administración & dosificación , Decitabina/administración & dosificación , Sistemas de Liberación de Medicamentos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Liposomas , Ratones , Ratones Endogámicos BALB C , Neoplasias/genética , Receptores de Estrógenos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...