Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Oncogene ; 41(42): 4709-4723, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36097192

RESUMEN

Clear cell renal cell carcinoma (ccRCC), the most common form of kidney cancer, is typically initiated by inactivation of the von Hippel Lindau (VHL) gene, which results in the constitutive activation of the hypoxia inducible factors, HIF-1α and HIF-2α. Using a high throughput screen, we identify novel compounds that decrease HIF-1/2α levels and induce ferroptosis by targeting Iron Sulfur Cluster Assembly 2 (ISCA2), a component of the late mitochondrial Iron Sulfur Cluster (L-ISC) assembly complex. ISCA2 inhibition either pharmacologically or using siRNA decreases HIF-2α protein levels by blocking iron-responsive element (IRE)-dependent translation, and at higher concentrations, also decreases HIF-1α translation through unknown mechanisms. Additionally, ISCA2 inhibition triggers the iron starvation response, resulting in iron/metals overload and death via ferroptosis. ISCA2 levels are decreased in ccRCC compared to normal kidney, and decreased ISCA2 levels are associated with pVHL loss and with sensitivity to ferroptosis induced by ISCA2 inhibition. Strikingly, pharmacological inhibition of ISCA2 using an orally available ISCA2 inhibitor significantly reduced ccRCC xenograft growth in vivo, decreased HIF-α levels and increased lipid peroxidation, suggesting increased ferroptosis in vivo. Thus, the targeting of ISCA2 may be a promising therapeutic strategy to inhibit HIF-1/2α and to induce ferroptosis in pVHL deficient cells.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Carcinoma de Células Renales , Ferroptosis , Proteínas Hierro-Azufre , Neoplasias Renales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Carcinoma de Células Renales/tratamiento farmacológico , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/metabolismo , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Proteínas Hierro-Azufre/genética , Proteínas Hierro-Azufre/metabolismo , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/genética , Neoplasias Renales/metabolismo , ARN Interferente Pequeño , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/genética , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/metabolismo
2.
Front Physiol ; 12: 760851, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35177992

RESUMEN

The Bajau Sea Nomads were recently demonstrated to have evolved larger spleens as an adaptation to millennia of a marine foraging lifestyle. The large-spleen phenotype appears to derive from increases in thyroid hormone (TH) production as a result of reduced expression of phosphodiesterase 10A (PDE10A), though the exact mechanism remains unknown. Through pharmacological inhibition of PDE10A using the selective inhibitor MP-10 in mice, we were able to mimic the Bajau adaptation and show that treated mice had significantly larger spleens than control animals. This difference appears connected to an excess of early stage erythrocytes and an apparent increase in red blood cell (RBC) precursor proliferation in response to increased TH. However, we determined that the stimulation of RBC production in the mouse model via TH is Erythropoietin (EPO)-independent, unlike in the altitude (chronic hypoxemia) response. We confirmed this using human GWAS data; although the Bajau PDE10A variants are significantly associated with increased TH levels and RBC count, they are not associated with EPO levels, nor are other strongly thyroid-associated SNPs. We therefore suggest that an EPO-independent mechanism of stimulating RBC precursor proliferation via TH upregulation underlies the increase in spleen size observed in Sea Nomad populations.

3.
Mol Cell ; 78(1): 31-41.e5, 2020 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-32126207

RESUMEN

Cellular iron homeostasis is dominated by FBXL5-mediated degradation of iron regulatory protein 2 (IRP2), which is dependent on both iron and oxygen. However, how the physical interaction between FBXL5 and IRP2 is regulated remains elusive. Here, we show that the C-terminal substrate-binding domain of FBXL5 harbors a [2Fe2S] cluster in the oxidized state. A cryoelectron microscopy (cryo-EM) structure of the IRP2-FBXL5-SKP1 complex reveals that the cluster organizes the FBXL5 C-terminal loop responsible for recruiting IRP2. Interestingly, IRP2 binding to FBXL5 hinges on the oxidized state of the [2Fe2S] cluster maintained by ambient oxygen, which could explain hypoxia-induced IRP2 stabilization. Steric incompatibility also allows FBXL5 to physically dislodge IRP2 from iron-responsive element RNA to facilitate its turnover. Taken together, our studies have identified an iron-sulfur cluster within FBXL5, which promotes IRP2 polyubiquitination and degradation in response to both iron and oxygen concentrations.


Asunto(s)
Proteínas F-Box/química , Proteína 2 Reguladora de Hierro/química , Oxígeno/química , Complejos de Ubiquitina-Proteína Ligasa/química , Línea Celular , Proteínas F-Box/metabolismo , Homeostasis , Humanos , Hierro/metabolismo , Proteína 2 Reguladora de Hierro/metabolismo , Proteínas Hierro-Azufre/química , Proteínas Hierro-Azufre/metabolismo , Modelos Moleculares , Unión Proteica , Estabilidad Proteica , Proteínas Quinasas Asociadas a Fase-S/química , Complejos de Ubiquitina-Proteína Ligasa/metabolismo
4.
Nat Commun ; 11(1): 296, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31941883

RESUMEN

Regulation of cellular iron homeostasis is crucial as both iron excess and deficiency cause hematological and neurodegenerative diseases. Here we show that mice lacking iron-regulatory protein 2 (Irp2), a regulator of cellular iron homeostasis, develop diabetes. Irp2 post-transcriptionally regulates the iron-uptake protein transferrin receptor 1 (TfR1) and the iron-storage protein ferritin, and dysregulation of these proteins due to Irp2 loss causes functional iron deficiency in ß cells. This impairs Fe-S cluster biosynthesis, reducing the function of Cdkal1, an Fe-S cluster enzyme that catalyzes methylthiolation of t6A37 in tRNALysUUU to ms2t6A37. As a consequence, lysine codons in proinsulin are misread and proinsulin processing is impaired, reducing insulin content and secretion. Iron normalizes ms2t6A37 and proinsulin lysine incorporation, restoring insulin content and secretion in Irp2-/- ß cells. These studies reveal a previously unidentified link between insulin processing and cellular iron deficiency that may have relevance to type 2 diabetes in humans.


Asunto(s)
Insulina/metabolismo , Proteína 2 Reguladora de Hierro/metabolismo , Hierro/metabolismo , ARN de Transferencia de Lisina/metabolismo , ARNt Metiltransferasas/metabolismo , Animales , Línea Celular Tumoral , Intolerancia a la Glucosa/genética , Homeostasis , Células Secretoras de Insulina/metabolismo , Insulinoma/genética , Insulinoma/metabolismo , Proteína 2 Reguladora de Hierro/genética , Proteínas Hierro-Azufre/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Proinsulina/genética , Proinsulina/metabolismo , ARN de Transferencia de Lisina/genética , Ratas , Respuesta de Proteína Desplegada/genética , ARNt Metiltransferasas/genética
5.
Elife ; 82019 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-31532389

RESUMEN

Iron is essential for survival of most organisms. All organisms have thus developed mechanisms to sense, acquire and sequester iron. In C. elegans, iron uptake and sequestration are regulated by HIF-1. We previously showed that hif-1 mutants are developmentally delayed when grown under iron limitation. Here we identify nhr-14, encoding a nuclear receptor, in a screen conducted for mutations that rescue the developmental delay of hif-1 mutants under iron limitation. nhr-14 loss upregulates the intestinal metal transporter SMF-3 to increase iron uptake in hif-1 mutants. nhr-14 mutants display increased expression of innate immune genes and DAF-16/FoxO-Class II genes, and enhanced resistance to Pseudomonas aeruginosa. These responses are dependent on the transcription factor PQM-1, which localizes to intestinal cell nuclei in nhr-14 mutants. Our data reveal how C. elegans utilizes nuclear receptors to regulate innate immunity and iron availability, and show iron sequestration as a component of the innate immune response.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/inmunología , Caenorhabditis elegans/metabolismo , Proteínas de Unión al ADN/metabolismo , Inmunidad Innata , Hierro/metabolismo , Pseudomonas aeruginosa/inmunología , Receptores Citoplasmáticos y Nucleares/metabolismo , Transducción de Señal , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Animales , Transporte Biológico , Resistencia a la Enfermedad , Infecciones por Pseudomonas/inmunología , Oligoelementos/metabolismo
6.
Front Pharmacol ; 5: 113, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24904417

RESUMEN

Iron is involved in many biological processes essential for sustaining life. In excess, iron is toxic due to its ability to catalyze the formation of free radicals that damage macromolecules. Organisms have developed specialized mechanisms to tightly regulate iron uptake, storage and efflux. Over the past decades, vertebrate model organisms have led to the identification of key genes and pathways that regulate systemic and cellular iron metabolism. This review provides an overview of iron metabolism in the roundworm Caenorhabditis elegans and highlights recent studies on the role of hypoxia and insulin signaling in the regulation of iron metabolism. Given that iron, hypoxia and insulin signaling pathways are evolutionarily conserved, C. elegans provides a genetic model organism that promises to provide new insights into mechanisms regulating mammalian iron metabolism.

7.
PLoS One ; 9(6): e98072, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24896637

RESUMEN

Iron Regulatory Protein 2 (Irp2, Ireb2) is a central regulator of cellular iron homeostasis in vertebrates. Two global knockout mouse models have been generated to explore the role of Irp2 in regulating iron metabolism. While both mouse models show that loss of Irp2 results in microcytic anemia and altered body iron distribution, discrepant results have drawn into question the role of Irp2 in regulating brain iron metabolism. One model shows that aged Irp2 deficient mice develop adult-onset progressive neurodegeneration that is associated with axonal degeneration and loss of Purkinje cells in the central nervous system. These mice show iron deposition in white matter tracts and oligodendrocyte soma throughout the brain. A contrasting model of global Irp2 deficiency shows no overt or pathological signs of neurodegeneration or brain iron accumulation, and display only mild motor coordination and balance deficits when challenged by specific tests. Explanations for conflicting findings in the severity of the clinical phenotype, brain iron accumulation and neuronal degeneration remain unclear. Here, we describe an additional mouse model of global Irp2 deficiency. Our aged Irp2-/- mice show marked iron deposition in white matter and in oligodendrocytes while iron content is significantly reduced in neurons. Ferritin and transferrin receptor 1 (TfR1, Tfrc), expression are increased and decreased, respectively, in the brain from Irp2-/- mice. These mice show impairments in locomotion, exploration, motor coordination/balance and nociception when assessed by neurological and behavioral tests, but lack overt signs of neurodegenerative disease. Ultrastructural studies of specific brain regions show no evidence of neurodegeneration. Our data suggest that Irp2 deficiency dysregulates brain iron metabolism causing cellular dysfunction that ultimately leads to mild neurological, behavioral and nociceptive impairments.


Asunto(s)
Conducta Animal/fisiología , Encéfalo/metabolismo , Proteína 2 Reguladora de Hierro/metabolismo , Hierro/metabolismo , Sustancia Blanca/metabolismo , Animales , Encéfalo/patología , Encéfalo/fisiopatología , Conducta Exploratoria/fisiología , Proteína 2 Reguladora de Hierro/genética , Ratones , Ratones Noqueados , Actividad Motora/fisiología , Neuronas/metabolismo , Neuronas/patología , Nocicepción/fisiología , Oligodendroglía/metabolismo , Oligodendroglía/patología , Receptores de Transferrina/genética , Receptores de Transferrina/metabolismo , Sustancia Blanca/patología , Sustancia Blanca/fisiopatología
8.
Biochim Biophys Acta ; 1823(9): 1468-83, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22610083

RESUMEN

Cellular iron homeostasis is maintained by iron regulatory proteins 1 and 2 (IRP1 and IRP2). IRPs bind to iron-responsive elements (IREs) located in the untranslated regions of mRNAs encoding protein involved in iron uptake, storage, utilization and export. Over the past decade, significant progress has been made in understanding how IRPs are regulated by iron-dependent and iron-independent mechanisms and the pathological consequences of IRP2 deficiency in mice. The identification of novel IREs involved in diverse cellular pathways has revealed that the IRP-IRE network extends to processes other than iron homeostasis. A mechanistic understanding of IRP regulation will likely yield important insights into the basis of disorders of iron metabolism. This article is part of a Special Issue entitled: Cell Biology of Metals.


Asunto(s)
Proteína 1 Reguladora de Hierro/metabolismo , Proteína 2 Reguladora de Hierro/deficiencia , Hierro/metabolismo , Elementos de Respuesta/genética , Animales , Ferritinas/genética , Ferritinas/metabolismo , Regulación de la Expresión Génica , Homeostasis/fisiología , Humanos , Transporte Iónico , Proteína 1 Reguladora de Hierro/genética , Proteína 2 Reguladora de Hierro/genética , Mamíferos , Ratones , Ratones Noqueados , Receptores de Transferrina/genética , Receptores de Transferrina/metabolismo , Regiones no Traducidas/genética
9.
PLoS Genet ; 7(12): e1002394, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22194696

RESUMEN

Caenorhabditis elegans ftn-1 and ftn-2, which encode the iron-storage protein ferritin, are transcriptionally inhibited during iron deficiency in intestine. Intestinal specific transcription is dependent on binding of ELT-2 to GATA binding sites in an iron-dependent enhancer (IDE) located in ftn-1 and ftn-2 promoters, but the mechanism for iron regulation is unknown. Here, we identify HIF-1 (hypoxia-inducible factor -1) as a negative regulator of ferritin transcription. HIF-1 binds to hypoxia-response elements (HREs) in the IDE in vitro and in vivo. Depletion of hif-1 by RNA interference blocks transcriptional inhibition of ftn-1 and ftn-2 reporters, and ftn-1 and ftn-2 mRNAs are not regulated in a hif-1 null strain during iron deficiency. An IDE is also present in smf-3 encoding a protein homologous to mammalian divalent metal transporter-1. Unlike the ftn-1 IDE, the smf-3 IDE is required for HIF-1-dependent transcriptional activation of smf-3 during iron deficiency. We show that hif-1 null worms grown under iron limiting conditions are developmentally delayed and that depletion of FTN-1 and FTN-2 rescues this phenotype. These data show that HIF-1 regulates intestinal iron homeostasis during iron deficiency by activating and inhibiting genes involved in iron uptake and storage.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/crecimiento & desarrollo , Caenorhabditis elegans/genética , Regulación del Desarrollo de la Expresión Génica , Hierro/metabolismo , Factores de Transcripción/metabolismo , Animales , Sitios de Unión , Proteínas de Caenorhabditis elegans/genética , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Ferritinas/genética , Factores de Transcripción GATA/genética , Factores de Transcripción GATA/metabolismo , Homeostasis/genética , Mucosa Intestinal/metabolismo , Deficiencias de Hierro , Unión Proteica , Interferencia de ARN , Factores de Transcripción/genética , Activación Transcripcional
10.
Science ; 326(5953): 718-21, 2009 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-19762596

RESUMEN

Eukaryotic cells require iron for survival and have developed regulatory mechanisms for maintaining appropriate intracellular iron concentrations. The degradation of iron regulatory protein 2 (IRP2) in iron-replete cells is a key event in this pathway, but the E3 ubiquitin ligase responsible for its proteolysis has remained elusive. We found that a SKP1-CUL1-FBXL5 ubiquitin ligase protein complex associates with and promotes the iron-dependent ubiquitination and degradation of IRP2. The F-box substrate adaptor protein FBXL5 was degraded upon iron and oxygen depletion in a process that required an iron-binding hemerythrin-like domain in its N terminus. Thus, iron homeostasis is regulated by a proteolytic pathway that couples IRP2 degradation to intracellular iron levels through the stability and activity of FBXL5.


Asunto(s)
Proteínas F-Box/metabolismo , Proteína 2 Reguladora de Hierro/metabolismo , Hierro/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Línea Celular , Proteínas Cullin/metabolismo , Hemeritrina/metabolismo , Homeostasis , Humanos , Proteína 1 Reguladora de Hierro/metabolismo , Oxígeno/metabolismo , Estructura Terciaria de Proteína , Proteínas Recombinantes/metabolismo , Proteínas Ligasas SKP Cullina F-box/metabolismo , Complejos de Ubiquitina-Proteína Ligasa
11.
Mol Cell Biol ; 29(8): 2219-29, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19223469

RESUMEN

Iron regulatory protein 2 (IRP2) is an RNA-binding protein that regulates the posttranscriptional expression of proteins required for iron homeostasis such as ferritin and transferrin receptor 1. IRP2 RNA-binding activity is primarily regulated by iron-mediated proteasomal degradation, but studies have suggested that IRP2 RNA binding is also regulated by thiol oxidation. We generated a model of IRP2 bound to RNA and found that two cysteines (C512 and C516) are predicted to lie in the RNA-binding cleft. Site-directed mutagenesis and thiol modification show that, while IRP2 C512 and C516 do not directly interact with RNA, both cysteines are located within the RNA-binding cleft and must be unmodified/reduced for IRP2-RNA interactions. Oxidative stress induced by cellular glucose deprivation reduces the RNA-binding activity of IRP2 but not IRP2-C512S or IRP2-C516S, consistent with the formation of a disulfide bond between IRP2 C512 and C516 during oxidative stress. Decreased IRP2 RNA binding is correlated with reduced transferrin receptor 1 mRNA abundance. These studies provide insight into the structural basis for IRP2-RNA interactions and reveal an iron-independent mechanism for regulating iron homeostasis through the redox regulation of IRP2 cysteines.


Asunto(s)
Antígenos CD/genética , Cisteína/metabolismo , Proteína 2 Reguladora de Hierro/metabolismo , Proteínas de Unión al ARN/metabolismo , Receptores de Transferrina/genética , Animales , Sitios de Unión , Homeostasis , Humanos , Ratones , Oxidación-Reducción , Estrés Oxidativo , ARN Mensajero/análisis
12.
J Biol Chem ; 283(35): 23589-98, 2008 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-18574241

RESUMEN

Iron regulatory protein 2 (IRP2) is a key iron sensor that post-transcriptionally regulates mammalian iron homeostasis by binding to iron-responsive elements (IREs) in mRNAs that encode proteins involved in iron metabolism (e.g. ferritin and transferrin receptor 1). During iron deficiency, IRP2 binds IREs to regulate mRNA translation or stability, whereas during iron sufficiency IRP2 is degraded by the proteasome. Here, we identify an iron-independent IRP2 phosphorylation site that is regulated by the cell cycle. IRP2 Ser-157 is phosphorylated by Cdk1/cyclin B1 during G(2)/M and is dephosphorylated during mitotic exit by the phosphatase Cdc14A. Ser-157 phosphorylation during G(2)/M reduces IRP2 RNA-binding activity and increases ferritin synthesis, whereas Ser-157 dephosphorylation during mitotic exit restores IRP2 RNA-binding activity and represses ferritin synthesis. These data show that reversible phosphorylation of IRP2 during G(2)/M has a role in modulating the iron-independent expression of ferritin and other IRE-containing mRNAs during the cell cycle.


Asunto(s)
División Celular/fisiología , Ferritinas/biosíntesis , Fase G2/fisiología , Proteína 2 Reguladora de Hierro/metabolismo , Biosíntesis de Proteínas/fisiología , Estabilidad del ARN/fisiología , Animales , Ferritinas/genética , Células HeLa , Homeostasis/fisiología , Humanos , Hierro/metabolismo , Deficiencias de Hierro , Proteína 2 Reguladora de Hierro/genética , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Fosforilación , Proteínas Tirosina Fosfatasas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas
13.
J Biol Chem ; 283(2): 716-25, 2008 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-18024960

RESUMEN

Ferritin is a ubiquitous protein that sequesters iron and protects cells from iron toxicity. Caenorhabditis elegans express two ferritins, FTN-1 and FTN-2, which are transcriptionally regulated by iron. To identify the cis-acting sequences and proteins required for iron-dependent regulation of ftn-1 and ftn-2 expression, we generated transcriptional GFP reporters corresponding to 5 '-upstream sequences of the ftn-1 and ftn-2 genes. We identified a conserved 63-bp sequence, the iron-dependent element (IDE), that is required for iron-dependent regulation of a ftn-1 GFP reporter in intestine. The IDE contains two GATA-binding motifs and three octameric direct repeats. Site-directed mutagenesis of the GATA sequences, singly or in combination, reduces ftn-1 GFP reporter expression in the intestine. In vitro DNA mobility shift assays show that the intestine-specific GATA protein ELT-2 binds to both GATA sequences. Inhibition of ELT-2 function by RNA interference blocks ftn-1 GFP reporter expression in vivo. Insertion of the IDE into the promoter region of a heterologous reporter activates iron-dependent transcription in intestine. These data demonstrate that the activation of ftn-1 and ftn-2 transcription by iron requires ELT-2 and that the IDE functions as an iron-dependent enhancer in intestine.


Asunto(s)
Caenorhabditis elegans/genética , Elementos de Facilitación Genéticos , Ferritinas/genética , Regulación de la Expresión Génica/efectos de los fármacos , Intestinos/fisiología , Hierro/farmacología , Animales , Secuencia de Bases , Caenorhabditis/genética , Caenorhabditis elegans/crecimiento & desarrollo , Secuencia Conservada , Fenómenos Fisiológicos del Sistema Digestivo , Genes Reporteros , Genotipo , Datos de Secuencia Molecular , Isoformas de Proteínas/genética , ARN Mensajero/efectos de los fármacos , ARN Mensajero/genética
14.
Biochim Biophys Acta ; 1783(2): 246-52, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17822790

RESUMEN

Iron regulatory protein 2 (IRP2) binds to iron-responsive elements (IREs) to regulate the translation and stability of mRNAs encoding several proteins involved in mammalian iron homeostasis. Increases in cellular iron stimulate the polyubiquitylation and proteasomal degradation of IRP2. One study has suggested that haem-oxidized IRP2 ubiquitin ligase-1 (HOIL-1) binds to a unique 73-amino acid (aa) domain in IRP2 in an iron-dependent manner to regulate IRP2 polyubiquitylation and degradation. Other studies have questioned the role of the 73-aa domain in iron-dependent IRP2 degradation. We investigated the potential role of HOIL-1 in the iron-mediated degradation of IRP2 in human embryonic kidney 293 (HEK293) cells. We found that transiently expressed HOIL-1 and IRP2 interact via the 73-aa domain, but this interaction is not iron-dependent, nor does it enhance the rate of IRP2 degradation by iron. In addition, stable expression of HOIL-1 does not alter the iron-dependent degradation or RNA-binding activity of endogenous IRP2. Reduction of endogenous HOIL-1 by siRNA has no affect on the iron-mediated degradation of endogenous IRP2. These data demonstrate that HOIL-1 is not required for iron-dependent degradation of IRP2 in HEK293 cells, and suggest that a HOIL-1 independent mechanism is used for IRP2 degradation in most cell types.


Asunto(s)
Proteína 2 Reguladora de Hierro/metabolismo , Hierro/farmacología , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Células COS , Línea Celular , Chlorocebus aethiops , Humanos , Unión Proteica/efectos de los fármacos , Estructura Terciaria de Proteína , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Ratas , Proteínas Recombinantes de Fusión/metabolismo , Elementos de Respuesta , Factores de Transcripción , Ubiquitina-Proteína Ligasas/química
15.
Neurosci Lett ; 422(3): 158-63, 2007 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-17614197

RESUMEN

Considerable evidence suggests that oxidative stress may be involved in the pathogenesis of Transmissible Spongiform Encephalopathies (TSEs). To investigate the involvement of iron metabolism in TSEs, we examined the expression levels of iron regulatory proteins (IRPs), ferritins, and binding activities of IRPs to iron-responsive element (IRE) in scrapie-infected mice. We found that the IRPs-IRE-binding activities and ferritins were increased in the astrocytes of hippocampus and cerebral cortex in the brains of scrapie-infected mice. These results suggest that alteration of iron metabolism contributes to development of neurodegeneration and that some protective mechanisms against iron-induced oxidative damage may occur during the pathogenesis of TSEs.


Asunto(s)
Encéfalo/metabolismo , Ferritinas/metabolismo , Proteína 1 Reguladora de Hierro/metabolismo , Proteína 2 Reguladora de Hierro/metabolismo , Scrapie/metabolismo , Animales , Western Blotting , Ferritinas/genética , Expresión Génica , Perfilación de la Expresión Génica , Inmunohistoquímica , Hierro/metabolismo , Proteína 1 Reguladora de Hierro/genética , Proteína 2 Reguladora de Hierro/genética , Masculino , Ratones , Reacción en Cadena de la Polimerasa , Scrapie/genética
16.
Biochim Biophys Acta ; 1763(7): 668-89, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16872694

RESUMEN

Both deficiencies and excesses of iron represent major public health problems throughout the world. Understanding the cellular and organismal processes controlling iron homeostasis is critical for identifying iron-related diseases and in advancing the clinical treatments for such disorders of iron metabolism. Iron regulatory proteins (IRPs) 1 and 2 are key regulators of vertebrate iron metabolism. These RNA binding proteins post-transcriptionally control the stability or translation of mRNAs encoding proteins involved in iron homeostasis thereby controlling the uptake, utilization, storage or export of iron. Recent evidence provides insight into how IRPs selectively control the translation or stability of target mRNAs, how IRP RNA binding activity is controlled by iron-dependent and iron-independent effectors, and the pathological consequences of dysregulation of the IRP system.


Asunto(s)
Homeostasis , Proteínas Reguladoras del Hierro/metabolismo , Hierro/metabolismo , Vertebrados/metabolismo , Animales
17.
Am J Physiol Regul Integr Comp Physiol ; 287(4): R894-901, 2004 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-15178542

RESUMEN

Placental iron transport during the last trimester of pregnancy determines the iron endowment of the neonate. Iron transport is a function of the major iron transport proteins: transferrin receptor-1 (TfR-1) and ferroportin-1 (FPN-1). The mRNAs for TfR-1 and, potentially, FPN-1 are posttranscriptionally regulated by iron regulatory protein (IRP)-1 and IRP-2. We assessed the effect of gestational age and fetal iron status on IRP-1- and IRP-2-binding activity and on the localization and protein expression of TfR-1 and FPN-1 protein at 24-40 wk of gestation in 21 placentas obtained from iron-sufficient nonanemic mothers. Gestational age had no effect on cord serum ferritin concentration, IRP-2 RNA-binding activity, transporter protein location, and TfR-1 or FPN-1 protein expression. IRP-1 activity remained constant until full term, when it decreased (P = 0.01). Placental ferritin (r = 0.76, P < 0.001) and FPN-1 (r = 0.44, P < 0.05) expression increased with gestational age. Fetal iron status, as indexed by cord serum ferritin concentration, was inversely related to placental IRP-1 (r = -0.66, P < 0.001) and IRP-2 (r = -0.42, P = 0.05) activities. Placental ferritin protein expression correlated better with IRP-1 (r = -0.45, P = 0.04) than with IRP-2 (r = -0.35, P = 0.10) activity. Placental TfR-1 and FPN-1 protein expression was independent of fetal or placental iron status and IRP activities. Iron status had no effect on transport protein localization. We conclude that, toward the end of the third trimester of iron-sufficient human pregnancy, the placenta accumulates ferritin and potentially increases placental-fetal iron delivery through increased FPN-1 expression. IRP-1 may have a more dominant role than IRP-2 activity in regulating ferritin expression.


Asunto(s)
Proteínas Portadoras/biosíntesis , Feto/metabolismo , Edad Gestacional , Proteínas Reguladoras del Hierro/biosíntesis , Hierro/metabolismo , Placenta/metabolismo , Adulto , Antígenos CD , Western Blotting , Femenino , Ferritinas/metabolismo , Sangre Fetal/metabolismo , Humanos , Inmunohistoquímica , Estado Nutricional , Embarazo , Tercer Trimestre del Embarazo , Unión Proteica , Receptores de Transferrina/metabolismo
18.
Blood ; 102(9): 3404-11, 2003 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-12855587

RESUMEN

Iron regulatory proteins (IRP1 and IRP2) are RNA-binding proteins that affect the translation and stabilization of specific mRNAs by binding to stem-loop structures known as iron responsive elements (IREs). IREs are found in the 5'-untranslated region (UTR) of ferritin (Ft) and mitochondrial aconitase (m-Aco) mRNAs, and in the 3'-UTR of transferrin receptor (TfR) and divalent metal transporter-1 (DMT1) mRNAs. Our previous studies show that besides iron, IRPs are regulated by hypoxia. Here we describe the consequences of IRP regulation and show that iron homeostasis is regulated in 2 phases during hypoxia: an early phase where IRP1 RNA-binding activity decreases and iron uptake and Ft synthesis increase, and a late phase where IRP2 RNA-binding activity increases and iron uptake and Ft synthesis decrease. The increase in iron uptake is independent of DMT1 and TfR, suggesting an unknown transporter. Unlike Ft, m-Aco is not regulated during hypoxia. During the late phase of hypoxia, IRP2 RNA-binding activity increases, becoming the dominant regulator responsible for decreasing Ft synthesis. During reoxygenation (ReO2), Ft protein increases concomitant with a decrease in IRP2 RNA-binding activity. The data suggest that the differential regulation of IRPs during hypoxia may be important for cellular adaptation to low oxygen tension.


Asunto(s)
Homeostasis , Hipoxia/metabolismo , Proteínas Reguladoras del Hierro/metabolismo , Hierro/metabolismo , Línea Celular , Humanos , Proteína 1 Reguladora de Hierro/metabolismo , Proteína 2 Reguladora de Hierro/metabolismo , Oxígeno/metabolismo , Receptores de Transferrina/metabolismo , Factores de Tiempo , Transferrina/biosíntesis
19.
J Biol Chem ; 278(41): 40337-42, 2003 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-12888568

RESUMEN

Iron regulatory protein 2 (IRP2) is a central regulator of cellular iron homeostasis due to its regulation of specific mRNAs encoding proteins of iron uptake and storage. Iron regulates IRP2 by mediating its rapid proteasomal degradation, where hypoxia and the hypoxia mimetics CoCl2 and desferrioxamine (DFO) stabilize it. Previous studies showed that iron-mediated degradation of IRP2 requires the presence of critical cysteines that reside within a 73-amino acid unique region. Here we show that a mutant IRP2 protein lacking this 73-amino acid region degraded at a rate similar to that of wild-type IRP2. In addition, DFO and hypoxia blocked the degradation of both the wild-type and mutant IRP2 proteins. Recently, members of the 2-oxoglutarate (2-OG)-dependent dioxygenase family have been shown to hydroxylate hypoxia-inducible factor-1 alpha (HIF-1 alpha), a modification required for its ubiquitination and proteasomal degradation. Since 2-OG-dependent dioxygenases require iron and oxygen, in addition to 2-OG, for substrate hydroxylation, we hypothesized that this activity may be involved in the regulation of IRP2 stability. To test this we used the 2-OG-dependent dioxygenase inhibitor dimethyloxalylglycine (DMOG) and showed that it blocked iron-mediated IRP2 degradation. In addition, hypoxia, DFO and DMOG blocked IRP2 ubiquitination. These data indicate that the region of IRP2 that is involved in IRP2 iron-mediated degradation lies outside of the 73-amino acid unique region and suggest a model whereby 2-OG-dependent dioxygenase activity may be involved in the oxygen and iron regulation of IRP2 protein stability.


Asunto(s)
Proteína 2 Reguladora de Hierro/metabolismo , Hierro/metabolismo , Oxígeno/metabolismo , Hipoxia de la Célula , Línea Celular , Estabilidad de Medicamentos , Humanos , Hidroxilación , Proteína 2 Reguladora de Hierro/química , Proteína 2 Reguladora de Hierro/genética , Ácidos Cetoglutáricos/metabolismo , Modelos Biológicos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Eliminación de Secuencia , Transfección , Ubiquitina/metabolismo
20.
Pediatr Res ; 53(5): 800-7, 2003 May.
Artículo en Inglés | MEDLINE | ID: mdl-12621119

RESUMEN

Iron plays an important role in numerous vital enzyme systems in the perinatal brain. The membrane proteins that mediate iron transport [transferrin receptor (TfR) and divalent metal transporter 1 (DMT-1)] and the iron regulatory proteins (IRP-1 and IRP-2) that stabilize their mRNAs undergo regional developmental changes in the iron-sufficient rat brain between postnatal day (P) 5 and 15. Perinatal iron deficiency (ID) affects developing brain regions nonhomogeneously, suggesting potential differences in regional iron transporter and regulatory protein expression. The objective of the study was to determine the effect of perinatal ID on regional expression of IRP-1, IRP-2, TfR, and DMT-1 in the developing rat brain. Gestationally iron-deficient Sprague Dawley rat pups were compared with iron-sufficient control pups at P10. Serial 12-mu coronal sections of fixed frozen brain from pups on P10 were assessed by light microscopy for IRP-1, IRP-2, DMT-1, and TfR localization. ID did not change the percentage of cells with positive staining for the four proteins in the choroid epithelium, ependyma, vascular endothelium, or neurons of the striatum. ID increased the percentage of neurons expressing the four proteins in the hippocampus and the cerebral cortex. Increased numbers of TfR- and DMT-1-positive cells were always associated with increased IRP-positive cells. The P10 rat responds to perinatal ID by selectively increasing the number of neurons expressing IRP-regulated transporters in brain regions that are rapidly developing, without any change at transport surfaces or in regions that are quiescent. Brain iron distribution during ID seems to be locally rather than globally regulated.


Asunto(s)
Anemia Ferropénica/metabolismo , Encéfalo/metabolismo , Receptores de Transferrina/metabolismo , Animales , Animales Recién Nacidos , Proteínas de Transporte de Catión/metabolismo , Corteza Cerebral/metabolismo , Plexo Coroideo/metabolismo , Cuerpo Estriado/metabolismo , Endotelio Vascular/metabolismo , Epéndimo/metabolismo , Femenino , Hipocampo/metabolismo , Proteína 1 Reguladora de Hierro/metabolismo , Proteína 2 Reguladora de Hierro/metabolismo , Proteínas de Unión a Hierro/metabolismo , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA