Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Integr Environ Assess Manag ; 13(4): 601-613, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27943571

RESUMEN

Historically, ecological risk assessments have rarely included amphibian species, focusing preferentially on other aquatic (fish, invertebrates, algae) and terrestrial wildlife (birds and mammal) species. Often this lack of consideration is due to a paucity of toxicity data, significant variation in study design, uncertainty with regard to exposure, or a combination of all three. Productive risk assessments for amphibians are particularly challenging, given variations in complex life history strategies. Further consideration is needed for the development of useful laboratory animal models and appropriate experimental test procedures that can be effectively applied to the examination of biological response patterns. Using these standardized techniques, risk estimates can be more accurately defined to ensure adequate protection of amphibians from a variety of stress agents. Patterns in toxicity may help to ascertain whether test results from 1 amphibian group (e.g., Urodela) could be sufficiently protective of another (e.g., Anura) and/or whether some nonamphibian aquatic taxonomic groups (e.g., fish or aquatic invertebrates) may be representative of aquatic amphibian life stages. This scope is intended to be a guide in the development of methods that would yield data appropriate for ecological risk decisions applicable to amphibians. Integr Environ Assess Manag 2017;13:601-613. © 2016 SETAC.


Asunto(s)
Anfibios/fisiología , Monitoreo del Ambiente/métodos , Pruebas de Toxicidad/métodos , Contaminantes Químicos del Agua/toxicidad , Animales , Medición de Riesgo/métodos
2.
Environ Toxicol Chem ; 25(10): 2601-12, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17022399

RESUMEN

Cause-effect sediment-quality benchmarks for the protection of benthic invertebrates are needed for polychlorinated biphenyls (PCBs) to support predictive risk assessments and retrospective evaluations of the causes of observed sediment toxicity. An in-depth evaluation of PCB aquatic toxicity and organic carbon partitioning was conducted to predict sediment effect concentrations using the equilibrium partitioning (EqP) approach. This evaluation was limited to invertebrate toxicity data, because PCBs may exert toxicity to invertebrates and fish via different toxicological mechanisms. As a result of differences in organic carbon partitioning among PCBs of differing levels of chlorination, the estimated EqP benchmarks increase with increasing degree of chlorination for various commercial and environmental PCB mixtures. Studies of spiked sediment toxicity using PCBs were reviewed, and their results generally were consistent with EqP predictions. Additionally, toxicity and benthic community data were reviewed for eight PCB-contaminated sites; these data also showed agreement with EqP predictions. None of these lines of evidence supports previously proposed, empirical sediment-quality guidelines for PCBs. Reasons for the lack of agreement between cause-effect and association-based benchmarks are discussed, and areas of future research to further refine EqP predictions for PCBs are identified.


Asunto(s)
Sedimentos Geológicos/química , Invertebrados/efectos de los fármacos , Bifenilos Policlorados/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...