Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Microbiol Spectr ; : e0444822, 2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-36975310

RESUMEN

Phytoremediation of petroleum hydrocarbons in subarctic regions relies on the successful establishment of plants that stimulate petroleum-degrading microorganisms, which can be challenging due to the extreme climate, limited nutrients, and difficulties in maintaining sites in remote locations. A long-term phytoremediation experiment was initiated in Alaska in 1995 with the introduction of grasses and/or fertilizer to petroleum hydrocarbon (PHC)-contaminated soils that were subsequently left unmanaged. In 2011, the PHC concentrations were below detection limits in all soils tested and the originally planted grasses had been replaced by volunteer plant species that had colonized the site. Here, we sought to understand how the original treatments influenced the structure of prokaryotic communities associated with plant species that colonized the soils and to assess the interactions between the rhizospheric and endophytic communities of the colonizing vegetation 20 years after the experiment was established. Metataxonomic analysis performed using 16S rRNA gene sequencing revealed that the original type of contaminated soil and phytoremediation strategy influenced the structure of both rhizospheric and endophytic communities of colonizing plants, even 20 years after the treatments were applied and following the disappearance of the originally planted grasses. Our findings demonstrate that the choice of initial phytoremediation strategy drove the succession of microorganisms associated with the colonizing vegetation. The outcome of this study provides new insight into the establishment of plant-associated microbial communities during secondary succession of subarctic areas previously contaminated by PHCs and indicates that the strategies for restoring these ecosystems influence the plant-associated microbiota in the long term. IMPORTANCE Subarctic ecosystems provide key services to local communities, yet they are threatened by pollution caused by spills and disposal of petroleum waste. Finding solutions for the remediation and restoration of subarctic soils is valuable for reasons related to human and ecosystem health, as well as environmental justice. This study provides novel insight into the long-term succession of soil and plant-associated microbiota in subarctic soils that had been historically contaminated with different sources of PHCs and subjected to distinct phytoremediation strategies. We provide evidence that even after the successful removal of PHCs and the occurrence of secondary succession, the fingerprint of the original source of contamination and the initial choice of remediation strategy can be detected as a microbial legacy in the rhizosphere, roots, and shoots of volunteer vegetation even 2 decades after the contamination had occurred. Such information needs to be borne in mind when designing and applying restoration approaches for PHC-contaminated soils in subarctic ecosystems.

2.
Environ Microbiol Rep ; 15(1): 51-59, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36177554

RESUMEN

While the genes and pathways responsible for petroleum biodegradation in marine environments have received substantial attention, considerably less is known about those active in the biodegradation of the commonly applied chemical dispersant Corexit 9500. Yet, their fate in the Arctic marine environment is an increasingly important unknown. To elucidate the genes and pathways active in the biodegradation of oil and dispersants, we performed metatranscriptomic sequencing on microbial communities in Arctic seawater exposed to oil, Corexit, or both for 0, 5, and 30 days in a mesocosm incubation experiment. While oil and Corexit stimulated significantly different metatranscriptomic profiles overall, both enriched a suite of fatty acid degradation gene transcripts. Based on the gene transcripts observed and the chemical structures of Corexit 9500 surfactant components, we propose a hypothetical pathway for Corexit surfactant biodegradation in which surfactant ester groups are transformed into fatty acids that are then funnelled into the ß-oxidation fatty acid degradation pathway. Several microbial taxa within Oceanospirillales, Pseudomonadales, and Alteromonadales were associated with either oil-only or Corexit-only exposure, potentially implicating them in the degradation of these mixtures. Metabolic gene transcripts were associated with diverse gammaproteobacterial lineages, with many genera exhibiting functional redundancy. These findings offer new insight into the potential genes, pathways, and microbial consortia involved in the biodegradation of Corexit 9500 in the Arctic marine environment.


Asunto(s)
Contaminación por Petróleo , Petróleo , Contaminantes Químicos del Agua , Petróleo/metabolismo , Contaminación por Petróleo/análisis , Biodegradación Ambiental , Agua de Mar/microbiología , Tensoactivos , Ácidos Grasos
3.
ISME J ; 16(1): 78-90, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34244610

RESUMEN

Methane (CH4) emissions from Arctic lakes are a large and growing source of greenhouse gas to the atmosphere with critical implications for global climate. Because Arctic lakes are ice covered for much of the year, understanding the metabolic flexibility of methanotrophs under anoxic conditions would aid in characterizing the mechanisms responsible for limiting CH4 emissions from high-latitude regions. Using sediments from an active CH4 seep in Lake Qalluuraq, Alaska, we conducted DNA-based stable isotope probing (SIP) in anoxic mesocosms and found that aerobic Gammaproteobacterial methanotrophs dominated in assimilating CH4. Aerobic methanotrophs were also detected down to 70 cm deep in sediments at the seep site, where anoxic conditions persist. Metagenomic analyses of the heavy DNA from 13CH4-SIP incubations showed that these aerobic methanotrophs had the capacity to generate intermediates such as methanol, formaldehyde, and formate from CH4 oxidation and to oxidize formaldehyde in the tetrahydromethanopterin (H4MPT)-dependent pathway under anoxic conditions. The high levels of Fe present in sediments, combined with Fe and CH4 profiles in the persistent CH4 seep site, suggested that oxidation of CH4, or, more specifically, its intermediates such as methanol and formaldehyde might be coupled to iron reduction. Aerobic methanotrophs also possessed genes associated with nitrogen and hydrogen metabolism, which might provide potentially alternative energy conservation options under anoxic conditions. These results expand the known metabolic spectrum of aerobic methanotrophs under anoxic conditions and necessitate the re-assessment of the mechanisms underlying CH4 oxidation in the Arctic, especially under lakes that experience extended O2 limitations during ice cover.


Asunto(s)
Lagos , Metano , Regiones Árticas , Lagos/microbiología , Metagenómica , Metano/metabolismo , Oxidación-Reducción
4.
Front Microbiol ; 12: 714769, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34512592

RESUMEN

An extensive plume of the emerging contaminant sulfolane has been found emanating from a refinery in Interior Alaska, raising questions about the microbial potential for natural attenuation and bioremediation in this subarctic aquifer. Previously, an aerobic sulfolane-assimilating Rhodoferax sp. was identified from the aquifer using stable isotope probing. Here, we assessed the distribution of known sulfolane-assimilating bacteria throughout the contaminated subarctic aquifer using 16S-rRNA-amplicon analyses of ~100 samples collected from groundwater monitoring wells and two groundwater treatment systems. One treatment system was an in situ air sparging system where air was injected directly into the aquifer. The other was an ex situ granular activated carbon (GAC) filtration system for the treatment of private well water. We found that the sulfolane-assimilating Rhodoferax sp. was present throughout the aquifer but was significantly more abundant in groundwater associated with the air sparge system. The reduction of sulfolane concentrations combined with the apparent enrichment of sulfolane degraders in the air sparging zone suggests that the addition of oxygen facilitated sulfolane biodegradation. To investigate other environmental controls on Rhodoferax populations, we also examined correlations between groundwater geochemical parameters and the relative abundance of the Rhodoferax sp. and found only manganese to be significantly positively correlated. The sulfolane-assimilating Rhodoferax sp. was not a major component of the GAC filtration system, suggesting that biodegradation is not an important contributor to sulfolane removal in these systems. We conclude that air sparging is a promising approach for enhancing the abundance and activity of aerobic sulfolane-degraders like Rhodoferax to locally stimulate sulfolane biodegradation in situ.

5.
Sci Total Environ ; 764: 142901, 2021 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-33757249

RESUMEN

Aerobic methane (CH4) oxidation coupled to denitrification (AME-D) can not only mitigate CH4 emission into the atmosphere, but also potentially alleviate nitrogen pollution in surface waters and engineered ecosystems, and it has attracted substantial research interest. O2 concentration plays a key role in AME-D, yet little is understood about how it impacts microbial interactions. Here, we applied isotopically labeled K15NO3 and 13CH4 and metagenomic analyses to investigate the metabolic and microbial link of AME-D at different O2 levels. Among the four experimental O2 levels of 21%,10%, 5% and 2.5% and a CH4 concentration of 8% (i.e., the O2/CH4 ratios of 2.62, 1.26, 0.63 and 0.31), the highest NO3--N removal occurred in the AME-D system incubated at the O2 concentration of 10%. Methanol and acetate may serve as the trophic linkage between aerobic methanotrophs and denitrifers in the AME-D systems. Methylotrophs including Methylophilus, Methylovorus, Methyloversatilis and Methylotenera were abundant under the O2-sufficient condition with the O2 concentration of 21%, while denitrifiers such as Azoarcus, Thauera and Thiobacillus dominated in the O2-limited environment with the O2 concentration of 10%. The competition of denitrifiers and methylotrophs in the AME-D system for CH4-derived carbon, such as methanol and acetate, might be influenced by chemotactic responses. More methane-derived carbon flowed into methylotrophs under the O2-sufficient condition, while more methane-derived carbon was used for denitrification in the O2-limited environment. These findings can aid in evaluating the distribution and contribution of AME-D and in developing strategies for mitigating CH4 emission and nitrogen pollution in natural and engineered ecosystems.


Asunto(s)
Desnitrificación , Metano , Ecosistema , Metagenómica , Oxidación-Reducción
6.
Front Microbiol ; 12: 581124, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33584606

RESUMEN

The paradigm of tight pelagic-benthic coupling in the Arctic suggests that current and future fluctuations in sea ice, primary production, and riverine input resulting from global climate change will have major impacts on benthic ecosystems. To understand how these changes will affect benthic ecosystem function, we must characterize diversity, spatial distribution, and community composition for all faunal components. Bacteria and archaea link the biotic and abiotic realms, playing important roles in organic matter (OM) decomposition, biogeochemical cycling, and contaminant degradation, yet sediment microbial communities have rarely been examined in the North American Arctic. Shifts in microbial community structure and composition occur with shifts in OM inputs and contaminant exposure, with implications for shifts in ecological function. Furthermore, the characterization of benthic microbial communities provides a foundation from which to build focused experimental research. We assessed diversity and community structure of benthic prokaryotes in the upper 1 cm of sediments in the southern Beaufort Sea (United States and Canada), and investigated environmental correlates of prokaryotic community structure over a broad spatial scale (spanning 1,229 km) at depths ranging from 17 to 1,200 m. Based on hierarchical clustering, we identified four prokaryotic assemblages from the 85 samples analyzed. Two were largely delineated by the markedly different environmental conditions in shallow shelf vs. upper continental slope sediments. A third assemblage was mainly comprised of operational taxonomic units (OTUs) shared between the shallow shelf and upper slope assemblages. The fourth assemblage corresponded to sediments receiving heavier OM loading, likely resulting in a shallower anoxic layer. These sites may also harbor microbial mats and/or methane seeps. Substructure within these assemblages generally reflected turnover along a longitudinal gradient, which may be related to the quantity and composition of OM deposited to the seafloor; bathymetry and the Mackenzie River were the two major factors influencing prokaryote distribution on this scale. In a broader geographical context, differences in prokaryotic community structure between the Beaufort Sea and Norwegian Arctic suggest that benthic microbes may reflect regional differences in the hydrography, biogeochemistry, and bathymetry of Arctic shelf systems.

7.
Appl Environ Microbiol ; 86(21)2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-32826215

RESUMEN

The risk of petroleum spills coupled with the potential application of chemical dispersants as a spill response strategy necessitates further understanding of the fate of oil and dispersants and their interactive effects during biodegradation. Using Arctic seawater mesocosms amended with either crude oil, Corexit 9500, or both together, we quantified the chemical losses of crude oil and Corexit 9500 and identified microbial taxa implicated in their biodegradation based on shifts in the microbial community structure over a 30-day time course. Chemical analyses included total petroleum hydrocarbons (TPH), n-alkanes, branched alkanes, and polycyclic aromatic hydrocarbons (PAHs) for oil loss and the surfactant components dioctyl sodium sulfosuccinate (DOSS), Span 80, Tween 80, Tween 85, and the DOSS metabolite ethylhexyl sulfosuccinate (EHSS) for Corexit loss. Changes to the microbial communities and identification of key taxa were determined by 16S rRNA gene amplicon sequencing. The nonionic surfactants of Corexit 9500 (Span 80 and Tweens 80 and 85) biodegraded rapidly, dropping to below the limits of detection within 5 days and prior to any detectable initiation of oil biodegradation. This resulted in no observable suppression of petroleum biodegradation in the presence of Corexit compared to that of oil alone. In contrast, biodegradation of DOSS was delayed in the presence of oil, based on the prolonged presence of DOSS and accumulation of the degradation intermediate EHSS that did not occur in the absence of oil. Microbial analyses revealed that oil and Corexit enriched different overall microbial communities, with the presence of both resulting in a community composition that shifted from one more similar to that of Corexit only to one reflecting the oil-only community over time, in parallel with the degradation of predominantly Corexit and then oil components. Some microbial taxa (Oleispira, Pseudofulvibacter, and Roseobacter) responded to either oil or Corexit, suggesting that some organisms may be capable of utilizing both substrates. Together, these findings reveal interactive effects of crude oil and Corexit 9500 on chemical losses and microbial communities as they biodegrade, providing further insight into their fate when copresent in the environment.IMPORTANCE Chemical dispersants such as Corexit 9500 are commonly used in oil spill response and are currently under consideration for use in the Arctic, where their fate and effects have not been well studied. This research was performed to determine the interactive effects of the copresence of crude oil and Corexit 9500 on the degradation of components from each mixture and the associated microbial community structure over time in Arctic seawater. These findings will help yield a better understanding of the biodegradability of dispersant components applied to an oil spill, the temporal microbial community response to dispersed oil, and the fundamental microbial ecology of organic contaminant biodegradation processes in the Arctic marine environment.


Asunto(s)
Bacterias/metabolismo , Lípidos , Microbiota , Petróleo/metabolismo , Regiones Árticas , Biodegradación Ambiental , ARN Bacteriano/análisis , ARN Ribosómico 16S/análisis , Agua de Mar/microbiología
8.
Environ Pollut ; 258: 113676, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31818614

RESUMEN

CH4 oxidation in landfill cover soils plays a significant role in mitigating CH4 release to the atmosphere. Oxygen availability and the presence of co-contaminants are potentially important factors affecting CH4 oxidation rate and the fate of CH4-derived carbon. In this study, microbial populations that oxidize CH4 and the subsequent conversion of CH4-derived carbon into CO2, soil organic C and biomass C were investigated in landfill cover soils at two O2 tensions, i.e., O2 concentrations of 21% ("sufficient") and 2.5% ("limited") with and without toluene. CH4-derived carbon was primarily converted into CO2 and soil organic C in the landfill cover soils, accounting for more than 80% of CH4 oxidized. Under the O2-sufficient condition, 52.9%-59.6% of CH4-derived carbon was converted into CO2 (CECO2-C), and 29.1%-39.3% was converted into soil organic C (CEorganic-C). A higher CEorganic-C and lower CECO2-C occurred in the O2-limited environment, relative to the O2-sufficient condition. With the addition of toluene, the carbon conversion efficiency of CH4 into biomass C and organic C increased slightly, especially in the O2-limited environment. A more complex microbial network was involved in CH4 assimilation in the O2-limited environment than under the O2-sufficient condition. DNA-based stable isotope probing of the community with 13CH4 revealed that Methylocaldum and Methylosarcina had a higher relative growth rate than other type I methanotrophs in the landfill cover soils, especially at the low O2 concentration, while Methylosinus was more abundant in the treatment with both the high O2 concentration and toluene. These results indicated that O2-limited environments could prompt more CH4-derived carbon to be deposited into soils in the form of biomass C and organic C, thereby enhancing the contribution of CH4-derived carbon to soil community biomass and functionality of landfill cover soils (i.e. reduction of CO2 emission).


Asunto(s)
Metano/química , Oxígeno/química , Microbiología del Suelo , Instalaciones de Eliminación de Residuos , Carbono , Oxidación-Reducción , Suelo
9.
Sci Rep ; 9(1): 3121, 2019 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-30816276

RESUMEN

Sulfolane is an industrial solvent and emerging organic contaminant affecting groundwater around the world, but little is known about microbes capable of biodegrading sulfolane or the pathways involved. We combined DNA-based stable isotope probing (SIP) with genome-resolved metagenomics to identify microorganisms associated with sulfolane biodegradation in a contaminated subarctic aquifer. In addition to 16S rRNA gene amplicon sequencing, we performed shotgun metagenomics on the 13C-labeled DNA to obtain functional and taxonomic information about the active sulfolane-degrading community. We identified the primary sulfolane degrader, comprising ~85% of the labeled community in the amplicon sequencing dataset, as closely related to Rhodoferax ferrireducens strain T118. We obtained a 99.8%-complete metagenome-assembled genome for this strain, allowing us to identify putative pathways of sulfolane biodegradation. Although the 4S dibenzothiophene desulfurization pathway has been proposed as an analog for sulfolane biodegradation, we found only a subset of the required genes, suggesting a novel pathway specific to sulfolane. DszA, the enzyme likely responsible for opening the sulfolane ring structure, was encoded on both the chromosome and a plasmid. This study demonstrates the power of integrating DNA-SIP with metagenomics to characterize emerging organic contaminant degraders without culture bias and expands the known taxonomic distribution of sulfolane biodegradation.


Asunto(s)
Comamonadaceae/metabolismo , Tiofenos/metabolismo , Contaminantes Químicos del Agua/metabolismo , Biodegradación Ambiental , Isótopos de Carbono/análisis , Comamonadaceae/enzimología , Comamonadaceae/genética , ADN Bacteriano/genética , Genes Bacterianos , Metagenómica , ARN Ribosómico 16S/genética
10.
Microorganisms ; 6(3)2018 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-30127327

RESUMEN

We studied the relationship between fiber digestion and the composition of the bacterial community in the rumen of muskoxen at the start and the end of the annual window of plant growth from spring to fall. Eight ruminally cannulated castrated males were fed brome hay or triticale straw (69.6% vs. 84.6% neutral detergent fiber, respectively) that were similar in fiber content to the sedges consumed by wild muskoxen (64.5 to 71.7% neutral detergent fiber). Muskoxen digested fiber from both forages faster and to a greater extent when straw rather than hay was consumed. Fiber digestion was therefore inducible by diet 4 in each season. We used 16S rRNA sequences from ruminal contents to study how season and diet affected the bacterial community and how the latter related to fiber digestion. We found that Bacteroidetes and Firmicutes accounted for 90% of the sequences at the level of Phylum, which is typical for the mammal gut microbiome. Using partial least square regressions, it was found that between 48% and 72% of the variation in fiber digestion was associated with 36⁻43 genera of bacteria. The main fibrolytic bacteria typical of domestic ruminants were generally not among the most important bacteria associated with fiber digestion in muskoxen. This reveals that muskoxen rely upon on a large suite of bacterial genera that are largely distinct from those used by other ruminants to digest the cell walls of plants that vary widely in both abundance and nutritional quality through the year.

11.
PLoS One ; 12(7): e0181462, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28727811

RESUMEN

Sulfolane, a water-soluble organosulfur compound, is used industrially worldwide and is associated with one of the largest contaminated groundwater plumes in the state of Alaska. Despite being widely used, little is understood about the degradation of sulfolane in the environment, especially in cold regions. We conducted aerobic and anaerobic microcosm studies to assess the biological and abiotic sulfolane degradation potential of contaminated subarctic aquifer groundwater and sediment from Interior Alaska. We also investigated the impacts of nutrient limitations and hydrocarbon co-contamination on sulfolane degradation. We found that sulfolane underwent biodegradation aerobically but not anaerobically under nitrate, sulfate, or iron-reducing conditions. No abiotic degradation activity was detectable under either oxic or anoxic conditions. Nutrient addition stimulated sulfolane biodegradation in sediment slurries at high sulfolane concentrations (100 mg L-1), but not at low sulfolane concentrations (500 µg L-1), and nutrient amendments were necessary to stimulate sulfolane biodegradation in incubations containing groundwater only. Hydrocarbon co-contamination retarded aerobic sulfolane biodegradation rates by ~30%. Our study is the first to investigate the sulfolane biodegradation potential of subarctic aquifer substrate and identifies several important factors limiting biodegradation rates. We concluded that oxygen is an important factor limiting natural attenuation of this sulfolane plume, and that nutrient amendments are unlikely to accelerate biodegradation within in the plume, although they may biostimulate degradation in ex situ groundwater treatment applications. Future work should be directed at elucidating the identity of indigenous sulfolane-degrading microorganisms and determining their distribution and potential activity in the environment.


Asunto(s)
Agua Subterránea/química , Tiofenos/química , Contaminantes Químicos del Agua/química , Alaska , Análisis de Varianza , Biodegradación Ambiental , Agua Subterránea/microbiología , Hidrocarburos/química , Oxígeno/química
12.
Sci Total Environ ; 607-608: 23-31, 2017 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-28686892

RESUMEN

Anaerobic oxidation of methane (AOM) is a biological process that plays an important role in reducing the CH4 emissions from a wide range of ecosystems. Arctic and sub-Arctic lakes are recognized as significant contributors to global methane (CH4) emission, since CH4 production is increasing as permafrost thaws and provides fuels for methanogenesis. Methanotrophy, including AOM, is critical to reducing CH4 emissions. The identity, activity, and metabolic processes of anaerobic methane oxidizers are poorly understood, yet this information is critical to understanding CH4 cycling and ultimately to predicting future CH4 emissions. This study sought to identify the microorganisms involved in AOM in sub-Arctic lake sediments using DNA- and phospholipid-fatty acid (PLFA)- based stable isotope probing. Results indicated that aerobic methanotrophs belonging to the genus Methylobacter assimilate carbon from CH4, either directly or indirectly. Other organisms that were found, in minor proportions, to assimilate CH4-derived carbon were methylotrophs and iron reducers, which might indicate the flow of CH4-derived carbon from anaerobic methanotrophs into the broader microbial community. While various other taxa have been reported in the literature to anaerobically oxidize methane in various environments (e.g. ANME-type archaea and Methylomirabilis Oxyfera), this report directly suggest that Methylobacter can perform this function, expanding our understanding of CH4 oxidation in anaerobic lake sediments.


Asunto(s)
Archaea/metabolismo , Sedimentos Geológicos/microbiología , Lagos/microbiología , Metano/metabolismo , Anaerobiosis , Regiones Árticas , Oxidación-Reducción
13.
ISME J ; 11(8): 1825-1835, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28430189

RESUMEN

Soil organic matter (SOM) stocks contain nearly three times as much carbon (C) as the atmosphere and changes in soil C stocks may have a major impact on future atmospheric carbon dioxide concentrations and climate. Over the past two decades, much research has been devoted to examining the influence of warming on SOM decomposition in topsoil. Most SOM, however, is old and stored in subsoil. The fate of subsoil SOM under future warming remains highly uncertain. Here, by combining a long-term field warming experiment and a meta-analysis study, we showed that warming significantly increased SOM decomposition in subsoil. We also showed that a decade of warming promoted decomposition of subsoil SOM with turnover times of decades to millennia in a tall grass prairie and this effect was largely associated with shifts in the functional gene structure of microbial communities. By coupling stable isotope probing with metagenomics, we found that microbial communities in warmed soils possessed a higher relative abundance of key functional genes involved in the degradation of organic materials with varying recalcitrance than those in control soils. These findings suggest warming may considerably alter the stability of the vast pool of old SOM in subsoil, contributing to the long-term positive feedback between the C cycle and climate.


Asunto(s)
Carbono/química , Cambio Climático , Calor , Microbiología del Suelo , Suelo/química , Bacterias/clasificación , Bacterias/genética , Metagenómica
14.
Arch Microbiol ; 199(6): 839-851, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28289787

RESUMEN

Used lubricating oil (ULO) is a widespread contaminant, particularly throughout tropical regions, and may be a candidate for bioremediation. However, little is known about the biodegradation potential or basic microbial ecology of ULO-contaminated soils. This study aims to determine the effects of used ULO on bacterial community structure and diversity. Using a combination of culture-based (agar plate counts) and molecular techniques (16S rRNA gene sequencing and DGGE), we investigated changes in soil bacterial communities from three different ULO-contaminated soils collected from motorcycle mechanical workshops (soil A, B, and C). We further explored the relationship between bacterial community structure, physiochemical soil parameters, and ULO composition in three ULO-contaminated soils. Results indicated that the three investigated soils had different community structures, which may be a result of the different ULO characteristics and physiochemical soil parameters of each site. Soil C had the highest ULO concentration and also the greatest diversity and richness of bacteria, which may be a result of higher nutrient retention, organic matter and cation exchange capacity, as well as freshness of oil compared to the other soils. In soils A and B, Proteobacteria (esp. Gammaproteobacteria) dominated the bacterial community, and in soil C, Actinobacteria and Firmicutes dominated. The genus Enterobacter, a member of the class Gammaproteobacteria, is known to include ULO-degraders, and this genus was the only one found in all three soils, suggesting that it could play a key role in the in situ degradation of ULO-contaminated tropical Thai soils. This study provides insights into our understanding of soil microbial richness, diversity, composition, and structure in tropical ULO-contaminated soils, and may be useful for the development of strategies to improve bioremediation.


Asunto(s)
Bacterias/metabolismo , Biodiversidad , Lubricantes/metabolismo , Microbiología del Suelo , Contaminantes del Suelo/metabolismo , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Biodegradación Ambiental , Lubricantes/análisis , ARN Ribosómico 16S/genética , Suelo/química , Contaminantes del Suelo/análisis , Clima Tropical
15.
Front Microbiol ; 7: 837, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27313574

RESUMEN

Despite decades of research there is limited understanding of how vegetation impacts the ability of microbial communities to process organic contaminants in soil. Using a combination of traditional and molecular assays, we examined how phytoremediation with willow and/or fertilization affected the microbial community present and active in the transformation of diesel contaminants. In a pot study, willow had a significant role in structuring the total bacterial community and resulted in significant decreases in diesel range organics (DRO). However, stable isotope probing (SIP) indicated that fertilizer drove the differences seen in community structure and function. Finally, analysis of the total variance in both pot and SIP experiments indicated an interactive effect between willow and fertilizer on the bacterial communities. This study clearly demonstrates that a willow native to Alaska accelerates DRO degradation, and together with fertilizer, increases aromatic degradation by shifting microbial community structure and the identity of active naphthalene degraders.

16.
Sci Rep ; 6: 22145, 2016 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-26915282

RESUMEN

Aerobic mineralization of PCBs, which are toxic and persistent organic pollutants, involves the upper (biphenyl, BP) and lower (benzoate, BZ) degradation pathways. The activity of different members of the soil microbial community in performing one or both pathways, and their synergistic interactions during PCB biodegradation, are not well understood. This study investigates BP and BZ biodegradation and subsequent carbon flow through the microbial community in PCB-contaminated soil. DNA stable isotope probing (SIP) was used to identify the bacterial guilds involved in utilizing (13)C-biphenyl (unchlorinated analogue of PCBs) and/or (13)C-benzoate (product/intermediate of BP degradation and analogue of chlorobenzoates). By performing SIP with two substrates in parallel, we reveal microbes performing the upper (BP) and/or lower (BZ) degradation pathways, and heterotrophic bacteria involved indirectly in processing carbon derived from these substrates (i.e. through crossfeeding). Substrate mineralization rates and shifts in relative abundance of labeled taxa suggest that BP and BZ biotransformations were performed by microorganisms with different growth strategies: BZ-associated bacteria were fast growing, potentially copiotrophic organisms, while microbes that transform BP were oligotrophic, slower growing, organisms. Our findings provide novel insight into the functional interactions of soil bacteria active in processing biphenyl and related aromatic compounds in soil, revealing how carbon flows through a bacterial community.


Asunto(s)
Bacterias/metabolismo , Benzoatos/metabolismo , Contaminación Ambiental , Hidrocarburos Aromáticos/metabolismo , Bifenilos Policlorados/metabolismo , Microbiología del Suelo , Contaminantes del Suelo/metabolismo , Bacterias/genética , Biodegradación Ambiental , Compuestos de Bifenilo/metabolismo , Residuos Peligrosos , ARN Ribosómico 16S/genética , Suelo/química
17.
Environ Microbiol ; 17(9): 3233-50, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25581131

RESUMEN

Aerobic methane (CH4 ) oxidation mitigates CH4 release and is a significant pathway for carbon and energy flow into aquatic food webs. Arctic lakes are responsible for an increasing proportion of global CH4 emissions, but CH4 assimilation into the aquatic food web in arctic lakes is poorly understood. Using stable isotope probing (SIP) based on phospholipid fatty acids (PLFA-SIP) and DNA (DNA-SIP), we tracked carbon flow quantitatively from CH4 into sediment microorganisms from an arctic lake with an active CH4 seepage. When 0.025 mmol CH4 g(-1) wet sediment was oxidized, approximately 15.8-32.8% of the CH4 -derived carbon had been incorporated into microorganisms. This CH4 -derived carbon equated to up to 5.7% of total primary production estimates for Alaskan arctic lakes. Type I methanotrophs, including Methylomonas, Methylobacter and unclassified Methylococcaceae, were most active at CH4 oxidation in this arctic lake. With increasing distance from the active CH4 seepage, a greater diversity of bacteria incorporated CH4 -derived carbon. Actinomycetes were the most quantitatively important microorganisms involved in secondary feeding on CH4 -derived carbon. These results showed that CH4 flows through methanotrophs into the broader microbial community and that type I methanotrophs, methylotrophs and actinomycetes are important organisms involved in using CH4 -derived carbon in arctic freshwater ecosystems.


Asunto(s)
Ciclo del Carbono , Sedimentos Geológicos/microbiología , Lagos/microbiología , Metano/metabolismo , Consorcios Microbianos , Microbiología del Agua , Actinobacteria/genética , Actinobacteria/metabolismo , Regiones Árticas , Carbono/metabolismo , Isótopos de Carbono/análisis , Ecosistema , Ácidos Grasos/metabolismo , Sedimentos Geológicos/química , Methylobacteriaceae/genética , Methylobacteriaceae/metabolismo , Methylomonas/genética , Methylomonas/metabolismo , Oxidación-Reducción , Fosfolípidos/metabolismo
18.
PLoS One ; 9(1): e84297, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24416211

RESUMEN

As offshore oil and gas exploration expands in the Arctic, it is important to expand the scientific understanding of arctic ecology and environmental impact to mitigate operational risks. Understanding the fate of oil in arctic seawater is a key factor for consideration. Here we report the chemical loss due to the biodegradation of Alaska North Slope (ANS) crude oil that would occur in the water column following the successful dispersion of a surface oil slick. Primary biodegradation and mineralization were measured in mesocosms containing Arctic seawater collected from the Chukchi Sea, Alaska, incubated at -1°C. Indigenous microorganisms degraded both fresh and weathered oil, in both the presence and absence of Corexit 9500, with oil losses ranging from 46-61% and up to 11% mineralization over 60 days. When tested alone, 14% of 50 ppm Corexit 9500 was mineralized within 60 days. Our study reveals that microorganisms indigenous to Arctic seawater are capable of performing extensive biodegradation of chemically and physically dispersed oil at an environmentally relevant temperature (-1°C) without any additional nutrients.


Asunto(s)
Frío , Contaminación por Petróleo/análisis , Petróleo/análisis , Agua de Mar/química , Alaska , Regiones Árticas , Biodegradación Ambiental/efectos de los fármacos , Cromatografía de Gases y Espectrometría de Masas , Hidrocarburos/análisis , Lípidos/farmacología , Minerales/análisis
19.
J Food Prot ; 76(5): 812-9, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23643122

RESUMEN

Cold-smoked salmon (CSS) is a potentially hazardous ready-to-eat food product due to the high risk of contamination with Listeria monocytogenes and lack of a listericidal step. We investigated the antilisterial property of liquid smokes (LS) against Listeria innocua ATCC 33090 (surrogate to L. monocytogenes) as a potential supplement to vacuum-packaged CSS. A full-strength LS (Code 10-Poly), and three commercially refined fractions (AM-3, AM-10, and 1291) having less color and flavor (lower content of phenols and carbonyl-containing compounds) were tested. In vitro assays showed strong inhibition for all LS except for 1291. The CSS strips were surface coated with AM-3 and AM-10 at 1% LS (vol/wt) with an L-shaped glass rod and then inoculated with L. innocua at 3.5 log CFU/g, vacuum packaged, and stored at 4°C. The LS did not completely eliminate L. innocua but provided a 2-log reduction by day 14, with no growth up to 35 days of refrigerated storage. A simple difference sensory test by 180 untrained panelists showed the application of AM-3 did not significantly influence the overall sensorial quality of CSS. In essence, the application of the refined LS as an antilisterial additive to CSS is recommended.


Asunto(s)
Contaminación de Alimentos/prevención & control , Conservación de Alimentos/métodos , Listeria monocytogenes/crecimiento & desarrollo , Alimentos Marinos/normas , Humo , Animales , Recuento de Colonia Microbiana , Seguridad de Productos para el Consumidor , Contaminación de Alimentos/análisis , Manipulación de Alimentos/métodos , Manipulación de Alimentos/normas , Microbiología de Alimentos , Embalaje de Alimentos/métodos , Conservación de Alimentos/normas , Humanos , Salmón , Alimentos Marinos/microbiología , Gusto , Vacio
20.
Food Sci Nutr ; 1(1): 102-15, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24804019

RESUMEN

The objective of this study was to determine important chemical characteristics of a full-strength liquid smoke, Code 10-Poly, and three refined liquid smoke products (AM-3, AM-10 and 1291) commercially available (Kerry Ingredients and Flavors, Monterey, TN). The pH of the products were significantly different (P < 0.05) and ranged from 2.3 (Code 10-Poly) to 5.7 (1291). The pH was inversely correlated with titratable acidity (R (2) = 0.87), which was significantly different (P < 0.05) among products ranging from 10.3% acetic acid (Code 10-Poly) to 0.7% acetic acid (1291). Total phenol content was quantified using the Gibbs reaction; the only liquid smoke containing appreciable level of phenolic compounds was Code 10-Poly at 3.22 mg mL(-1). Gas chromatography-mass spectrometry (GC-MS) analysis of liquid smoke dichloromethane extracts revealed that carbonyl-containing compounds were major constituents of all products, in which 1-hydroxy-2-butanone, 2(5H)-furanone, propanal and cyclopentenone predominated. Organic acids were detected by GC-MS in all extracts and correlated positively (R (2) = 0.98) with titratable acidity. The GC-MS data showed that phenolic compounds constituted a major portion of Code 10-Poly, and were detected only in trace quantities in 1291. The refined liquid smokes had lighter color, lower acidity, and reduced level of carbonyl-containing compounds and organic acids. Our study revealed major differences in pH, titratable acidity, total phenol content, color and chemical make-up of the full-strength and refined liquid smokes. The three refined liquid smoke products studied have less flavor and color active compounds, when compared with the full-strength product. Furthermore, the three refined products studied have unique chemical characteristics and will impart specific sensorial properties to food systems. Understanding the chemical composition of liquid smokes, be these refined or full-strength products, is an important step to establish their functions and appropriate use in food systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...