Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Physiol ; 597(7): 2045-2061, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30656684

RESUMEN

KEY POINTS: Orosensory thermal trigeminal afferent neurons respond to cool, warm, and nociceptive hot temperatures with the majority activated in the cool range. Many of these thermosensitive trigeminal orosensory afferent neurons also respond to capsaicin, menthol, and/or mustard oil (allyl isothiocyanate) at concentrations found in foods and spices. There is significant but incomplete overlap between afferent trigeminal neurons that respond to oral thermal stimulation and to the above chemesthetic compounds. Capsaicin sensitizes warm trigeminal thermoreceptors and orosensory nociceptors; menthol attenuates cool thermoresponses. ABSTRACT: When consumed with foods, mint, mustard, and chili peppers generate pronounced oral thermosensations. Here we recorded responses in mouse trigeminal ganglion neurons to investigate interactions between thermal sensing and the active ingredients of these plants - menthol, allyl isothiocyanate (AITC), and capsaicin, respectively - at concentrations found in foods and commercial hygiene products. We carried out in vivo confocal calcium imaging of trigeminal ganglia in which neurons express GCaMP3 or GCAMP6s and recorded their responses to oral stimulation with thermal and the above chemesthetic stimuli. In the V3 (oral sensory) region of the ganglion, thermoreceptive neurons accounted for ∼10% of imaged neurons. We categorized them into three distinct classes: cool-responsive and warm-responsive thermosensors, and nociceptors (responsive only to temperatures ≥43-45 °C). Menthol, AITC, and capsaicin also elicited robust calcium responses that differed markedly in their latencies and durations. Most of the neurons that responded to these chemesthetic stimuli were also thermosensitive. Capsaicin and AITC increased the numbers of warm-responding neurons and shifted the nociceptor threshold to lower temperatures. Menthol attenuated the responses in all classes of thermoreceptors. Our data show that while individual neurons may respond to a narrow temperature range (or even bimodally), taken collectively, the population is able to report on graded changes of temperature. Our findings also substantiate an explanation for the thermal sensations experienced when one consumes pungent spices or mint.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Capsaicina/farmacología , Mentol/farmacología , Neuronas/efectos de los fármacos , Aceites de Plantas/farmacología , Sensación Térmica/fisiología , Nervio Trigémino/citología , Animales , Frío , Femenino , Proteínas Fluorescentes Verdes , Calor , Masculino , Ratones , Planta de la Mostaza , Canales de Potencial de Receptor Transitorio/fisiología
2.
Front Neural Circuits ; 11: 37, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28620283

RESUMEN

Auditory streaming enables perception and interpretation of complex acoustic environments that contain competing sound sources. At early stages of central processing, sounds are segregated into separate streams representing attributes that later merge into acoustic objects. Streaming of temporal cues is critical for perceiving vocal communication, such as human speech, but our understanding of circuits that underlie this process is lacking, particularly at subcortical levels. The superior paraolivary nucleus (SPON), a prominent group of inhibitory neurons in the mammalian brainstem, has been implicated in processing temporal information needed for the segmentation of ongoing complex sounds into discrete events. The SPON requires temporally precise and robust excitatory input(s) to convey information about the steep rise in sound amplitude that marks the onset of voiced sound elements. Unfortunately, the sources of excitation to the SPON and the impact of these inputs on the behavior of SPON neurons have yet to be resolved. Using anatomical tract tracing and immunohistochemistry, we identified octopus cells in the contralateral cochlear nucleus (CN) as the primary source of excitatory input to the SPON. Cluster analysis of miniature excitatory events also indicated that the majority of SPON neurons receive one type of excitatory input. Precise octopus cell-driven onset spiking coupled with transient offset spiking make SPON responses well-suited to signal transitions in sound energy contained in vocalizations. Targets of octopus cell projections, including the SPON, are strongly implicated in the processing of temporal sound features, which suggests a common pathway that conveys information critical for perception of complex natural sounds.


Asunto(s)
Núcleo Coclear/citología , Neuronas/fisiología , Complejo Olivar Superior/citología , Complejo Olivar Superior/fisiología , Anestesia General , Animales , Estado de Conciencia/efectos de los fármacos , Estado de Conciencia/fisiología , Neuronas/efectos de los fármacos
3.
Neuroscience ; 337: 315-330, 2016 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-27651152

RESUMEN

The leading treatments for severe hearing disabilities work on the principle of conveying electrical pulses to the auditory brainstem that enable perception of speech. It is currently not known how well the brainstem neurons specialized for decoding such coarse sound information develop when deprived of auditory input activity. Here, we used congenitally deaf α1D-/- mice, lacking activity in the auditory nerve, to investigate the superior paraolivary nucleus (SPON) - a prominent mammalian brainstem structure that responds selectively to sound pulses by rebound spiking. Whole-cell patch-clamp recordings from SPON neurons in the α1D-/- and control mice were obtained at equivalent pre- and post-hearing onset ages. The results show that SPON neurons in the α1D-/- display less precise, plateau-like rebound spiking compared to control neurons. However, the rebound spiking mechanism undergoes strong compensation with age in the α1D-/-. Voltage-activated Ca2+-currents lower the spike threshold, rescuing the capacity for spike initiation at pre-hearing onset ages. Gradual up-regulation of the inwardly rectifying h-current contributes to depolarize the membrane potential. Reduction of the membrane time constant and less recruitment of Ca2+-currents thereby normalize precise rebound spiking at post-hearing onset ages. We found the soluble form of the neurotrophic factor neuritin to be up-regulated in SPON of deaf mice, which may have promoted neuronal survival and prolonged plasticity of the SPON circuitry. A stereotyped timeline of compensation of rebound spiking in deaf SPON neurons indicates robust intrinsic regulation of the brainstem circuitry encoding sound rhythms. This may be a prerequisite for successful cochlear implants.


Asunto(s)
Potenciales de Acción/fisiología , Vías Auditivas/fisiología , Audición/fisiología , Neuronas/fisiología , Núcleo Olivar/fisiología , Estimulación Acústica/métodos , Animales , Vías Auditivas/crecimiento & desarrollo , Percepción Auditiva/fisiología , Ratones , Plasticidad Neuronal , Núcleo Olivar/crecimiento & desarrollo , Tiempo de Reacción/fisiología
4.
PLoS Genet ; 11(9): e1005500, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26352669

RESUMEN

Nature's fastest motors are the cochlear outer hair cells (OHCs). These sensory cells use a membrane protein, Slc26a5 (prestin), to generate mechanical force at high frequencies, which is essential for explaining the exquisite hearing sensitivity of mammalian ears. Previous studies suggest that Slc26a5 continuously diffuses within the membrane, but how can a freely moving motor protein effectively convey forces critical for hearing? To provide direct evidence in OHCs for freely moving Slc26a5 molecules, we created a knockin mouse where Slc26a5 is fused with YFP. These mice and four other strains expressing fluorescently labeled membrane proteins were used to examine their lateral diffusion in the OHC lateral wall. All five proteins showed minimal diffusion, but did move after pharmacological disruption of membrane-associated structures with a cholesterol-depleting agent and salicylate. Thus, our results demonstrate that OHC lateral wall structure constrains the mobility of plasma membrane proteins and that the integrity of such membrane-associated structures are critical for Slc26a5's active and structural roles. The structural constraint of membrane proteins may exemplify convergent evolution of cellular motors across species. Our findings also suggest a possible mechanism for disorders of cholesterol metabolism with hearing loss such as Niemann-Pick Type C diseases.


Asunto(s)
Células Ciliadas Auditivas Externas/metabolismo , Proteínas Motoras Moleculares/metabolismo , Animales , Proteínas Bacterianas/genética , Proteínas Luminiscentes/genética , Ratones , Ratones Transgénicos , Rodopsina/metabolismo , Ácido Salicílico/farmacología , beta-Ciclodextrinas/farmacología
5.
PLoS One ; 9(5): e98277, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24867596

RESUMEN

The functional role of efferent innervation of the vestibular end-organs in the inner ear remains elusive. This study provides the first physiological characterization of the cholinergic vestibular efferent (VE) neurons in the brainstem by utilizing a transgenic mouse model, expressing eGFP under a choline-acetyltransferase (ChAT)-locus spanning promoter in combination with targeted patch clamp recordings. The intrinsic electrical properties of the eGFP-positive VE neurons were compared to the properties of the lateral olivocochlear (LOC) brainstem neurons, which gives rise to efferent innervation of the cochlea. Both VE and the LOC neurons were marked by their negative resting membrane potential <-75 mV and their passive responses in the hyperpolarizing range. In contrast, the response properties of VE and LOC neurons differed significantly in the depolarizing range. When injected with positive currents, VE neurons fired action potentials faithfully to the onset of depolarization followed by sparse firing with long inter-spike intervals. This response gave rise to a low response gain. The LOC neurons, conversely, responded with a characteristic delayed tonic firing upon depolarizing stimuli, giving rise to higher response gain than the VE neurons. Depolarization triggered large TEA insensitive outward currents with fast inactivation kinetics, indicating A-type potassium currents, in both the inner ear-projecting neuronal types. Immunohistochemistry confirmed expression of Kv4.3 and 4.2 ion channel subunits in both the VE and LOC neurons. The difference in spiking responses to depolarization is related to a two-fold impact of these transient outward currents on somatic integration in the LOC neurons compared to in VE neurons. It is speculated that the physiological properties of the VE neurons might be compatible with a wide-spread control over motion and gravity sensation in the inner ear, providing likewise feed-back amplification of abrupt and strong phasic signals from the semi-circular canals and of tonic signals from the gravito-sensitive macular organs.


Asunto(s)
Tronco Encefálico/metabolismo , Colina O-Acetiltransferasa/genética , Neuronas Eferentes/fisiología , Potenciales de Acción , Animales , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Técnicas de Placa-Clamp , Vestíbulo del Laberinto/fisiología
6.
J Neurosci ; 31(47): 17193-206, 2011 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-22114286

RESUMEN

How do neurons compute? Two main theories compete: neurons could temporally integrate noisy inputs (rate-based theories) or they could detect coincident input spikes (spike timing-based theories). Correlations at fine timescales have been observed in many areas of the nervous system, but they might have a minor impact. To address this issue, we used a probabilistic approach to quantify the impact of coincidences on neuronal response in the presence of fluctuating synaptic activity. We found that when excitation and inhibition are balanced, as in the sensory cortex in vivo, synchrony in a very small proportion of inputs results in dramatic increases in output firing rate. Our theory was experimentally validated with in vitro recordings of cortical neurons of mice. We conclude that not only are noisy neurons well equipped to detect coincidences, but they are so sensitive to fine correlations that a rate-based description of neural computation is unlikely to be accurate in general.


Asunto(s)
Potenciales de Acción/fisiología , Neuronas/fisiología , Animales , Estimulación Eléctrica , Potenciales Postsinápticos Excitadores/fisiología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Técnicas de Cultivo de Órganos , Células Piramidales/fisiología
7.
J Neurosci ; 31(35): 12566-78, 2011 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-21880918

RESUMEN

The superior paraolivary nucleus (SPON) is a prominent structure in the auditory brainstem. In contrast to the principal superior olivary nuclei with identified roles in processing binaural sound localization cues, the role of the SPON in hearing is not well understood. A combined in vitro and in vivo approach was used to investigate the cellular properties of SPON neurons in the mouse. Patch-clamp recordings in brain slices revealed that brief and well timed postinhibitory rebound spiking, generated by the interaction of two subthreshold-activated ion currents, is a hallmark of SPON neurons. The I(h) current determines the timing of the rebound, whereas the T-type Ca(2+) current boosts the rebound to spike threshold. This precisely timed rebound spiking provides a physiological explanation for the sensitivity of SPON neurons to sinusoidally amplitude-modulated (SAM) tones in vivo, where peaks in the sound envelope drive inhibitory inputs and SPON neurons fire action potentials during the waveform troughs. Consistent with this notion, SPON neurons display intrinsic tuning to frequency-modulated sinusoidal currents (1-15Hz) in vitro and discharge with strong synchrony to SAMs with modulation frequencies between 1 and 20 Hz in vivo. The results of this study suggest that the SPON is particularly well suited to encode rhythmic sound patterns. Such temporal periodicity information is likely important for detection of communication cues, such as the acoustic envelopes of animal vocalizations and speech signals.


Asunto(s)
Potenciales de Acción/fisiología , Inhibición Neural/fisiología , Neuronas/fisiología , Núcleo Olivar/citología , Sonido , Estimulación Acústica/métodos , Anestésicos Locales/farmacología , Animales , Animales Recién Nacidos , Vías Auditivas/fisiología , Biofisica , Calcio/metabolismo , Bloqueadores de los Canales de Calcio/farmacología , Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo , Estimulación Eléctrica , Femenino , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización , Técnicas In Vitro , Canales Iónicos/metabolismo , Lidocaína/análogos & derivados , Lidocaína/farmacología , Mibefradil/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Red Nerviosa/efectos de los fármacos , Red Nerviosa/fisiología , Periodicidad , Canales de Potasio/metabolismo , Psicoacústica , Pirimidinas/farmacología , Tiempo de Reacción/fisiología , Tetrodotoxina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...