Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 10(27): eadj7402, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38959321

RESUMEN

The study of the tumor microbiome has been garnering increased attention. We developed a computational pipeline (CSI-Microbes) for identifying microbial reads from single-cell RNA sequencing (scRNA-seq) data and for analyzing differential abundance of taxa. Using a series of controlled experiments and analyses, we performed the first systematic evaluation of the efficacy of recovering microbial unique molecular identifiers by multiple scRNA-seq technologies, which identified the newer 10x chemistries (3' v3 and 5') as the best suited approach. We analyzed patient esophageal and colorectal carcinomas and found that reads from distinct genera tend to co-occur in the same host cells, testifying to possible intracellular polymicrobial interactions. Microbial reads are disproportionately abundant within myeloid cells that up-regulate proinflammatory cytokines like IL1Β and CXCL8, while infected tumor cells up-regulate antigen processing and presentation pathways. These results show that myeloid cells with bacteria engulfed are a major source of bacterial RNA within the tumor microenvironment (TME) and may inflame the TME and influence immunotherapy response.


Asunto(s)
Bacterias , RNA-Seq , Análisis de la Célula Individual , Humanos , Análisis de la Célula Individual/métodos , RNA-Seq/métodos , Bacterias/genética , Microambiente Tumoral , Células Mieloides/metabolismo , Células Mieloides/microbiología , Análisis de Secuencia de ARN/métodos , Neoplasias Colorrectales/microbiología , Neoplasias Colorrectales/genética , Biología Computacional/métodos , ARN Bacteriano/genética , Neoplasias Esofágicas/microbiología , Neoplasias Esofágicas/genética , Microbiota , Análisis de Expresión Génica de una Sola Célula
2.
PLoS Comput Biol ; 19(6): e1011195, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37276234

RESUMEN

Mutational processes and their exposures in particular genomes are key to our understanding of how these genomes are shaped. However, current analyses assume that these processes are uniformly active across the genome without accounting for potential covariates such as strand or genomic region that could impact such activities. Here we suggest the first mutation-covariate models that explicitly model the effect of different covariates on the exposures of mutational processes. We apply these models to test the impact of replication strand on these processes and compare them to strand-oblivious models across a range of data sets. Our models capture replication strand specificity, point to signatures affected by it, and score better on held-out data compared to standard models that do not account for mutation-level covariate information.


Asunto(s)
Neoplasias , Humanos , Neoplasias/genética , Mutación/genética , Genómica
3.
Cancers (Basel) ; 15(5)2023 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-36900390

RESUMEN

Mutational signature analysis promises to reveal the processes that shape cancer genomes for applications in diagnosis and therapy. However, most current methods are geared toward rich mutation data that has been extracted from whole-genome or whole-exome sequencing. Methods that process sparse mutation data typically found in practice are only in the earliest stages of development. In particular, we previously developed the Mix model that clusters samples to handle data sparsity. However, the Mix model had two hyper-parameters, including the number of signatures and the number of clusters, that were very costly to learn. Therefore, we devised a new method that was several orders-of-magnitude more efficient for handling sparse data, was based on mutation co-occurrences, and imitated word co-occurrence analyses of Twitter texts. We showed that the model produced significantly improved hyper-parameter estimates that led to higher likelihoods of discovering overlooked data and had better correspondence with known signatures.

5.
Cell Genom ; 2(2)2022 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-35382456

RESUMEN

Recent genome-wide CRISPR-Cas9 loss-of-function screens have identified genetic dependencies across many cancer cell lines. Associations between these dependencies and genomic alterations in the same cell lines reveal phenomena such as oncogene addiction and synthetic lethality. However, comprehensive identification of such associations is complicated by complex interactions between genes across genetically heterogeneous cancer types. We introduce and apply the algorithm SuperDendrix to CRISPR-Cas9 loss-of-function screens from 769 cancer cell lines, to identify differential dependencies across cell lines and to find associations between differential dependencies and combinations of genomic alterations and cell-type-specific markers. These associations respect the position and type of interactions within pathways: for example, we observe increased dependencies on downstream activators of pathways, such as NFE2L2, and decreased dependencies on upstream activators of pathways, such as CDK6. SuperDendrix also reveals dozens of dependencies on lineage-specific transcription factors, identifies cancer-type-specific correlations between dependencies, and enables annotation of individual mutated residues.

6.
J Comput Biol ; 29(1): 56-73, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34986026

RESUMEN

Over the past decade, a promising line of cancer research has utilized machine learning to mine statistical patterns of mutations in cancer genomes for information. Recent work shows that these statistical patterns, commonly referred to as "mutational signatures," have diverse therapeutic potential as biomarkers for cancer therapies. However, translating this potential into reality is hindered by limited access to sequencing in the clinic. Almost all methods for mutational signature analysis (MSA) rely on whole genome or whole exome sequencing data, while sequencing in the clinic is typically limited to small gene panels. To improve clinical access to MSA, we considered the question of whether targeted panels could be designed for the purpose of mutational signature detection. Here we present ScalpelSig, to our knowledge the first algorithm that automatically designs genomic panels optimized for detection of a given mutational signature. The algorithm learns from data to identify genome regions that are particularly indicative of signature activity. Using a cohort of breast cancer genomes as training data, we show that ScalpelSig panels substantially improve accuracy of signature detection compared to baselines. We find that some ScalpelSig panels even approach the performance of whole exome sequencing, which observes over 10 × as much genomic material. We test our algorithm under a variety of conditions, showing that its performance generalizes to another dataset of breast cancers, to smaller panel sizes, and to lesser amounts of training data.


Asunto(s)
Algoritmos , Análisis Mutacional de ADN/estadística & datos numéricos , Genómica/estadística & datos numéricos , Neoplasias de la Mama/genética , Estudios de Cohortes , Biología Computacional , Bases de Datos Genéticas/estadística & datos numéricos , Femenino , Humanos , Aprendizaje Automático , Mutación , Secuenciación Completa del Genoma/estadística & datos numéricos
7.
Nat Commun ; 12(1): 6512, 2021 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-34764240

RESUMEN

Recent studies have reported that genome editing by CRISPR-Cas9 induces a DNA damage response mediated by p53 in primary cells hampering their growth. This could lead to a selection of cells with pre-existing p53 mutations. In this study, employing an integrated computational and experimental framework, we systematically investigated the possibility of selection of additional cancer driver mutations during CRISPR-Cas9 gene editing. We first confirm the previous findings of the selection for pre-existing p53 mutations by CRISPR-Cas9. We next demonstrate that similar to p53, wildtype KRAS may also hamper the growth of Cas9-edited cells, potentially conferring a selective advantage to pre-existing KRAS-mutant cells. These selective effects are widespread, extending across cell-types and methods of CRISPR-Cas9 delivery and the strength of selection depends on the sgRNA sequence and the gene being edited. The selection for pre-existing p53 or KRAS mutations may confound CRISPR-Cas9 screens in cancer cells and more importantly, calls for monitoring patients undergoing CRISPR-Cas9-based editing for clinical therapeutics for pre-existing p53 and KRAS mutations.


Asunto(s)
Proteína 9 Asociada a CRISPR/metabolismo , Edición Génica/métodos , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Proteína 9 Asociada a CRISPR/genética , Biología Computacional , Humanos , Mutación/genética , Proteínas Proto-Oncogénicas p21(ras)/genética
8.
Genome Med ; 13(1): 173, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34724984

RESUMEN

Mutational signatures are key to understanding the processes that shape cancer genomes, yet their analysis requires relatively rich whole-genome or whole-exome mutation data. Recently, orders-of-magnitude sparser gene-panel-sequencing data have become increasingly available in the clinic. To deal with such sparse data, we suggest a novel mixture model, Mix. In application to simulated and real gene-panel sequences, Mix is shown to outperform current approaches and yield mutational signatures and patient stratifications that are in higher agreement with the literature. We further demonstrate its utility in several clinical settings, successfully predicting therapy benefit and patient groupings from MSK-IMPACT pan-cancer data. Availability: https://github.com/itaysason/Mix-MMM .


Asunto(s)
Mutación , Neoplasias/genética , Algoritmos , Exoma , Humanos , Neoplasias Pulmonares/genética , Modelos Genéticos , Secuenciación del Exoma
9.
PLoS Comput Biol ; 17(10): e1009542, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34665813

RESUMEN

Mutational processes shape the genomes of cancer patients and their understanding has important applications in diagnosis and treatment. Current modeling of mutational processes by identifying their characteristic signatures views each base substitution in a limited context of a single flanking base on each side. This context definition gives rise to 96 categories of mutations that have become the standard in the field, even though wider contexts have been shown to be informative in specific cases. Here we propose a data-driven approach for constructing a mutation categorization for mutational signature analysis. Our approach is based on the assumption that tumor cells that are exposed to similar mutational processes, show similar expression levels of DNA damage repair genes that are involved in these processes. We attempt to find a categorization that maximizes the agreement between mutation and gene expression data, and show that it outperforms the standard categorization over multiple quality measures. Moreover, we show that the categorization we identify generalizes to unseen data from different cancer types, suggesting that mutation context patterns extend beyond the immediate flanking bases.


Asunto(s)
Biología Computacional/métodos , Análisis Mutacional de ADN/métodos , Mutación/genética , Neoplasias/genética , Daño del ADN/genética , Regulación Neoplásica de la Expresión Génica/genética , Humanos
10.
Annu Rev Biomed Data Sci ; 4: 189-206, 2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-34465178

RESUMEN

Mutations are the driving force of evolution, yet they underlie many diseases, in particular, cancer. They are thought to arise from a combination of stochastic errors in DNA processing, naturally occurring DNA damage (e.g., the spontaneous deamination of methylated CpG sites), replication errors, and dysregulation of DNA repair mechanisms. High-throughput sequencing has made it possible to generate large datasets to study mutational processes in health and disease. Since the emergence of the first mutational process studies in 2012, this field is gaining increasing attention and has already accumulated a host of computational approaches and biomedical applications.


Asunto(s)
Neoplasias , Daño del ADN , Reparación del ADN/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Mutación , Neoplasias/genética
11.
Bioinformatics ; 36(Suppl_2): i866-i874, 2020 12 30.
Artículo en Inglés | MEDLINE | ID: mdl-33381837

RESUMEN

MOTIVATION: Mapping genetic interactions (GIs) can reveal important insights into cellular function and has potential translational applications. There has been great progress in developing high-throughput experimental systems for measuring GIs (e.g. with double knockouts) as well as in defining computational methods for inferring (imputing) unknown interactions. However, existing computational methods for imputation have largely been developed for and applied in baker's yeast, even as experimental systems have begun to allow measurements in other contexts. Importantly, existing methods face a number of limitations in requiring specific side information and with respect to computational cost. Further, few have addressed how GIs can be imputed when data are scarce. RESULTS: In this article, we address these limitations by presenting a new imputation framework, called Extensible Matrix Factorization (EMF). EMF is a framework of composable models that flexibly exploit cross-species information in the form of GI data across multiple species, and arbitrary side information in the form of kernels (e.g. from protein-protein interaction networks). We perform a rigorous set of experiments on these models in matched GI datasets from baker's and fission yeast. These include the first such experiments on genome-scale GI datasets in multiple species in the same study. We find that EMF models that exploit side and cross-species information improve imputation, especially in data-scarce settings. Further, we show that EMF outperforms the state-of-the-art deep learning method, even when using strictly less data, and incurs orders of magnitude less computational cost. AVAILABILITY: Implementations of models and experiments are available at: https://github.com/lrgr/EMF. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Epistasis Genética
12.
Genome Med ; 12(1): 52, 2020 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-32471470

RESUMEN

BACKGROUND: Studies of cancer mutations have typically focused on identifying cancer driving mutations that confer growth advantage to cancer cells. However, cancer genomes accumulate a large number of passenger somatic mutations resulting from various endogenous and exogenous causes, including normal DNA damage and repair processes or cancer-related aberrations of DNA maintenance machinery as well as mutations triggered by carcinogenic exposures. Different mutagenic processes often produce characteristic mutational patterns called mutational signatures. Identifying mutagenic processes underlying mutational signatures shaping a cancer genome is an important step towards understanding tumorigenesis. METHODS: To investigate the genetic aberrations associated with mutational signatures, we took a network-based approach considering mutational signatures as cancer phenotypes. Specifically, our analysis aims to answer the following two complementary questions: (i) what are functional pathways whose gene expression activities correlate with the strengths of mutational signatures, and (ii) are there pathways whose genetic alterations might have led to specific mutational signatures? To identify mutated pathways, we adopted a recently developed optimization method based on integer linear programming. RESULTS: Analyzing a breast cancer dataset, we identified pathways associated with mutational signatures on both expression and mutation levels. Our analysis captured important differences in the etiology of the APOBEC-related signatures and the two clock-like signatures. In particular, it revealed that clustered and dispersed APOBEC mutations may be caused by different mutagenic processes. In addition, our analysis elucidated differences between two age-related signatures-one of the signatures is correlated with the expression of cell cycle genes while the other has no such correlation but shows patterns consistent with the exposure to environmental/external processes. CONCLUSIONS: This work investigated, for the first time, a network-level association of mutational signatures and dysregulated pathways. The identified pathways and subnetworks provide novel insights into mutagenic processes that the cancer genomes might have undergone and important clues for developing personalized drug therapies.


Asunto(s)
Neoplasias de la Mama/genética , Desaminasas APOBEC/genética , Femenino , Humanos , Mutación , Fenotipo
13.
iScience ; 23(3): 100900, 2020 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-32088392

RESUMEN

The characterization of mutational processes in terms of their signatures of activity relies mostly on the assumption that mutations in a given cancer genome are independent of one another. Recently, it was discovered that certain segments of mutations, termed processive groups, occur on the same DNA strand and are generated by a single process or signature. Here we provide a first probabilistic model of mutational signatures that accounts for their observed stickiness and strand coordination. The model conditions on the observed strand for each mutation and allows the same signature to generate a run of mutations. It can both use known signatures or learn new ones. We show that this model provides a more accurate description of the properties of mutagenic processes than independent-mutation achieving substantially higher likelihood on held-out data. We apply this model to characterize the processivity of mutagenic processes across multiple types of cancer.

14.
Pac Symp Biocomput ; 25: 226-237, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31797599

RESUMEN

Distinct mutational processes shape the genomes of the clones comprising a tumor. These processes result in distinct mutational patterns, summarized by a small number of mutational signatures. Current analyses of clone-specific exposures to mutational signatures do not fully incorporate a tumor's evolutionary context, either inferring identical exposures for all tumor clones, or inferring exposures for each clone independently. Here, we introduce the Tree-constrained Exposure problem to infer a small number of exposure shifts along the edges of a given tumor phylogeny. Our algorithm, PhySigs, solves this problem and includes model selection to identify the number of exposure shifts that best explain the data. We validate our approach on simulated data and identify exposure shifts in lung cancer data, including at least one shift with a matching subclonal driver mutation in the mismatch repair pathway. Moreover, we show that our approach enables the prioritization of alternative phylogenies inferred from the same sequencing data. PhySigs is publicly available at https://github.com/elkebir-group/PhySigs.


Asunto(s)
Biología Computacional , Neoplasias , Algoritmos , Humanos , Mutación , Neoplasias/genética , Filogenia
15.
Pac Symp Biocomput ; 25: 262-273, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31797602

RESUMEN

Cancer genomes accumulate a large number of somatic mutations resulting from imperfection of DNA processing during normal cell cycle as well as from carcinogenic exposures or cancer related aberrations of DNA maintenance machinery. These processes often lead to distinctive patterns of mutations, called mutational signatures. Several computational methods have been developed to uncover such signatures from catalogs of somatic mutations. However, cancer mutational signatures are the end-effect of several interplaying factors including carcinogenic exposures and potential deficiencies of the DNA repair mechanism. To fully understand the nature of each signature, it is important to disambiguate the atomic components that contribute to the final signature. Here, we introduce a new descriptor of mutational signatures, DNA Repair FootPrint (RePrint), and show that it can capture common properties of deficiencies in repair mechanisms contributing to diverse signatures. We validate the method with published mutational signatures from cell lines targeted with CRISPR-Cas9-based knockouts of DNA repair genes.


Asunto(s)
Biología Computacional , Neoplasias , ADN , Reparación del ADN/genética , Humanos , Mutación , Neoplasias/genética
16.
Bioinformatics ; 35(14): i492-i500, 2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-31510643

RESUMEN

MOTIVATION: Somatic mutations result from processes related to DNA replication or environmental/lifestyle exposures. Knowing the activity of mutational processes in a tumor can inform personalized therapies, early detection, and understanding of tumorigenesis. Computational methods have revealed 30 validated signatures of mutational processes active in human cancers, where each signature is a pattern of single base substitutions. However, half of these signatures have no known etiology, and some similar signatures have distinct etiologies, making patterns of mutation signature activity hard to interpret. Existing mutation signature detection methods do not consider tumor-level clinical/demographic (e.g. smoking history) or molecular features (e.g. inactivations to DNA damage repair genes). RESULTS: To begin to address these challenges, we present the Tumor Covariate Signature Model (TCSM), the first method to directly model the effect of observed tumor-level covariates on mutation signatures. To this end, our model uses methods from Bayesian topic modeling to change the prior distribution on signature exposure conditioned on a tumor's observed covariates. We also introduce methods for imputing covariates in held-out data and for evaluating the statistical significance of signature-covariate associations. On simulated and real data, we find that TCSM outperforms both non-negative matrix factorization and topic modeling-based approaches, particularly in recovering the ground truth exposure to similar signatures. We then use TCSM to discover five mutation signatures in breast cancer and predict homologous recombination repair deficiency in held-out tumors. We also discover four signatures in a combined melanoma and lung cancer cohort-using cancer type as a covariate-and provide statistical evidence to support earlier claims that three lung cancers from The Cancer Genome Atlas are misdiagnosed metastatic melanomas. AVAILABILITY AND IMPLEMENTATION: TCSM is implemented in Python 3 and available at https://github.com/lrgr/tcsm, along with a data workflow for reproducing the experiments in the paper. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Neoplasias de la Mama , Mutación , Neoplasias , Algoritmos , Teorema de Bayes , Neoplasias de la Mama/genética , Carcinogénesis , Humanos , Neoplasias/genética
17.
Genome Med ; 11(1): 49, 2019 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-31349863

RESUMEN

Knowing the activity of the mutational processes shaping a cancer genome may provide insight into tumorigenesis and personalized therapy. It is thus important to characterize the signatures of active mutational processes in patients from their patterns of single base substitutions. However, mutational processes do not act uniformly on the genome, leading to statistical dependencies among neighboring mutations. To account for such dependencies, we develop the first sequence-dependent model, SigMa, for mutation signatures. We apply SigMa to characterize genomic and other factors that influence the activity of mutation signatures in breast cancer. We show that SigMa outperforms previous approaches, revealing novel insights on signature etiology. The source code for SigMa is publicly available at https://github.com/lrgr/sigma.


Asunto(s)
Biomarcadores de Tumor , Biología Computacional/métodos , Análisis Mutacional de ADN/métodos , Cadenas de Markov , Mutación , Neoplasias/genética , Algoritmos , Neoplasias de la Mama/genética , Femenino , Genoma Humano , Genómica/métodos , Humanos , Programas Informáticos
18.
Nucleic Acids Res ; 47(9): e51, 2019 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-30847485

RESUMEN

Transferring knowledge between species is key for many biological applications, but is complicated by divergent and convergent evolution. Many current approaches for this problem leverage sequence and interaction network data to transfer knowledge across species, exemplified by network alignment methods. While these techniques do well, they are limited in scope, creating metrics to address one specific problem or task. We take a different approach by creating an environment where multiple knowledge transfer tasks can be performed using the same protein representations. Specifically, our kernel-based method, MUNK, integrates sequence and network structure to create functional protein representations, embedding proteins from different species in the same vector space. First we show proteins in different species that are close in MUNK-space are functionally similar. Next, we use these representations to share knowledge of synthetic lethal interactions between species. Importantly, we find that the results using MUNK-representations are at least as accurate as existing algorithms for these tasks. Finally, we generalize the notion of a phenolog ('orthologous phenotype') to use functionally similar proteins (i.e. those with similar representations). We demonstrate the utility of this broadened notion by using it to identify known phenologs and novel non-obvious ones supported by current research.


Asunto(s)
Biología Computacional/métodos , Proteínas/genética , Mutaciones Letales Sintéticas/genética , Algoritmos , Animales , Humanos , Modelos Animales , Mapeo de Interacción de Proteínas/métodos , Alineación de Secuencia , Análisis de Secuencia de Proteína/métodos , Especificidad de la Especie
19.
Proc Natl Acad Sci U S A ; 115(47): E11101-E11110, 2018 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-30404913

RESUMEN

How mutation and selection determine the fitness landscape of tumors and hence clinical outcome is an open fundamental question in cancer biology, crucial for the assessment of therapeutic strategies and resistance to treatment. Here we explore the mutation-selection phase diagram of 6,721 tumors representing 23 cancer types by quantifying the overall somatic point mutation load (ML) and selection (dN/dS) in the entire proteome of each tumor. We show that ML strongly correlates with patient survival, revealing two opposing regimes around a critical point. In low-ML cancers, a high number of mutations indicates poor prognosis, whereas high-ML cancers show the opposite trend, presumably due to mutational meltdown. Although the majority of cancers evolve near neutrality, deviations are observed at extreme MLs. Melanoma, with the highest ML, evolves under purifying selection, whereas in low-ML cancers, signatures of positive selection are observed, demonstrating how selection affects tumor fitness. Moreover, different cancers occupy specific positions on the ML-dN/dS plane, revealing a diversity of evolutionary trajectories. These results support and expand the theory of tumor evolution and its nonlinear effects on survival.


Asunto(s)
Acumulación de Mutaciones , Mutación/genética , Neoplasias/genética , Proteoma/genética , Selección Genética/genética , Humanos , Modelos Genéticos , Neoplasias/mortalidad , Neoplasias/patología , Resultado del Tratamiento
20.
Bioinformatics ; 34(17): i972-i980, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-30423088

RESUMEN

Motivation: The analysis of high-dimensional 'omics data is often informed by the use of biological interaction networks. For example, protein-protein interaction networks have been used to analyze gene expression data, to prioritize germline variants, and to identify somatic driver mutations in cancer. In these and other applications, the underlying computational problem is to identify altered subnetworks containing genes that are both highly altered in an 'omics dataset and are topologically close (e.g. connected) on an interaction network. Results: We introduce Hierarchical HotNet, an algorithm that finds a hierarchy of altered subnetworks. Hierarchical HotNet assesses the statistical significance of the resulting subnetworks over a range of biological scales and explicitly controls for ascertainment bias in the network. We evaluate the performance of Hierarchical HotNet and several other algorithms that identify altered subnetworks on the problem of predicting cancer genes and significantly mutated subnetworks. On somatic mutation data from The Cancer Genome Atlas, Hierarchical HotNet outperforms other methods and identifies significantly mutated subnetworks containing both well-known cancer genes and candidate cancer genes that are rarely mutated in the cohort. Hierarchical HotNet is a robust algorithm for identifying altered subnetworks across different 'omics datasets. Availability and implementation: http://github.com/raphael-group/hierarchical-hotnet. Supplementary information: Supplementary material are available at Bioinformatics online.


Asunto(s)
Neoplasias/genética , Algoritmos , Redes Reguladoras de Genes , Humanos , Neoplasias/metabolismo , Oncogenes , Mapas de Interacción de Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...