Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros












Intervalo de año de publicación
1.
J Appl Microbiol ; 134(1)2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36626727

RESUMEN

AIMS: To isolate and characterize non-rhizobial nodule-associated bacteria (NAB) from cowpea root-nodules regarding their performance of plant-growth-promoting mechanisms and their ability to enhance cowpea growth and symbiosis when co-inoculated with bradyrhizobia. METHODS AND RESULTS: Sixteen NAB were isolated, identified, and in vitro evaluated for plant growth promotion traits. The ability to promote cowpea growth was analyzed when co-inoculated with Bradyrhizobium pachyrhizi BR 3262 in sterile and non-sterile substrates. The 16S rRNA gene sequences analysis revealed that NAB belonged to the genera Chryseobacterium (4), Bacillus (3), Microbacterium (3), Agrobacterium (1), Escherichia (1), Delftia (1), Pelomonas (1), Sphingomonas (1), and Staphylococcus (1). All strains produced different amounts of auxin siderophores and formed biofilms. Twelve out of the 16 strains carried the nifH, a gene associated with nitrogen fixation. Co-inoculation of NAB (ESA 424 and ESA 29) with Bradyrhizobium pachyrhizi BR 3262 significantly promoted cowpea growth, especially after simultaneous inoculation with the three strains. CONCLUSIONS: NAB are efficient cowpea growth promoters and can improve the efficiency of the symbiosis between cowpea and the N2-fixing microsymbiont B. pachyrhizi BR 3262, mainly under a specific triple microbial association.


Asunto(s)
Bradyrhizobium , Pilotos , Rhizobium , Vigna , Humanos , Vigna/genética , Vigna/microbiología , Simbiosis/genética , Rhizobium/genética , ARN Ribosómico 16S/genética , Nódulos de las Raíces de las Plantas/microbiología , Bradyrhizobium/genética , Fijación del Nitrógeno , Filogenia
2.
Arch Microbiol ; 204(12): 698, 2022 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-36355213

RESUMEN

Antarctica has a great diversity of microorganisms with biotechnological potential but is not very well Known about yeasts with phosphate solubilization activity. Thus, the aim of this study was to evaluate the ability of yeasts from Antarctica lichens to solubilize phosphate in vitro. In the screening, 147 yeasts were tested and 43 (29%) showed P solubilization in solid NBRIP medium at 15.0 °C, with a higher prevalence of positive genera Vishniacozyma, followed by Cystobasidium. Most of the positive yeasts were isolated from Usnea auratiacoatra, followed by Polycauliona regalis and Lecania brialmontii. Two strains with better activity after screening were selected for the solubilization in the liquid medium, Vishniacozyma victoriae 2.L15 and A.L6 (unidentified). Vishniacozyma victoriae 2.L15 exhibiting activities at 25.0 °C (29.91 mg/L of phosphate and pH 6.85) and at 30.0 °C (619.04 mg/L of phosphate and pH 3.73) and A.L6 strain at 25.0 °C (25.05 mg/L of phosphate and pH 6.69) and at 30.0 °C (31.25 mg/L of phosphate and pH 6.47). Of eight organic acids tested by HPLC, tartaric and acetic acids were detected during phosphate solubilization, with greater release in the period of 144 (2.13 mg/L) and 72 (13.72 mg/L) hours, respectively. Future studies to elucidate the presence of functional genes for P metabolism in lichens, as well as studies in the field of proteomics for the discovery of yeast proteins related to P solubilization are needed. Thus, the high prevalence of lichen-associated yeast communities probably contributed to the high frequency of phosphate-solubilizing isolates in this study.


Asunto(s)
Líquenes , Fosfatos , Fosfatos/metabolismo , Líquenes/metabolismo , Regiones Antárticas , Levaduras
3.
Extremophiles ; 25(2): 181-191, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33635427

RESUMEN

In association with lichens, bacteria can play key roles in solubilizing sources of inorganic phosphates that are available in the environment. In this study, the potential of bacteria isolated from 15 Antarctic lichen samples for phosphate solubilization was investigated. From 124 bacteria tested, 66 (53%) were positive for phosphate solubilization in solid NBRIP medium, with a higher prevalence of Pseudomonas, followed by Caballeronia and Chryseobacterium. Most of the phosphate-solubilizing bacteria were isolated from Usnea auratiacoatra, followed by Caloplaca regalis and Xanthoria candelaria. Two isolates showed outstanding performance, Pseudomonas sp. 11.LB15 and Pseudomonas sp. 1.LB34, since they presented solubilization in the temperature range from 15.0 to 30.0 °C, and maximum quantification of soluble phosphate at 25.0 °C was 511.21 and 532.07 mg/L for Pseudomonas sp. 11.LB15 and Pseudomonas sp. 1.LB34, respectively. At 30.0 °C soluble phosphate yield was 639.43 and 518.95 mg/L with pH of 3.74 and 3.87 for Pseudomonas sp. 11.LB15 and Pseudomonas sp. 1.LB34, respectively. Fumaric and tartaric acids were released during the solubilization process. Finally, bacteria isolated from Antarctic lichens were shown to have the potential for phosphate solubilization, opening perspectives for future application in the agricultural sector and contributing to reduce the use of chemical fertilizers.


Asunto(s)
Líquenes , Fosfatos , Regiones Antárticas , Ascomicetos , Bacterias , Microbiología del Suelo
4.
Braz. j. microbiol ; 49(4): 703-713, Oct.-Dec. 2018. tab, graf
Artículo en Inglés | LILACS | ID: biblio-974305

RESUMEN

ABSTRACT The leguminous inoculation with nodule-inducing bacteria that perform biological nitrogen fixation is a good example of an "eco-friendly agricultural practice". Bradyrhizobium strains BR 3267 and BR 3262 are recommended for cowpea (Vigna unguiculata) inoculation in Brazil and showed remarkable responses; nevertheless neither strain was characterized at species level, which is our goal in the present work using a polyphasic approach. The strains presented the typical phenotype of Bradyrhizobium with a slow growth and a white colony on yeast extract-mannitol medium. Strain BR 3267 was more versatile in its use of carbon sources compared to BR 3262. The fatty acid composition of BR 3267 was similar to the type strain of Bradyrhizobium yuanmingense; while BR 3262 was similar to Bradyrhizobium elkanii and Bradyrhizobium pachyrhizi. Phylogenetic analyses based on 16S rRNA and three housekeeping genes placed both strains within the genus Bradyrhizobium: strain BR 3267 was closest to B. yuanmingense and BR 3262 to B. pachyrhizi. Genome average nucleotide identity and DNA-DNA reassociation confirmed the genomic identification of B. yuanmingense BR 3267 and B. pachyrhizi BR 3262. The nodC and nifH gene analyses showed that strains BR 3267 and BR 3262 hold divergent symbiotic genes. In summary, the results indicate that cowpea can establish effective symbiosis with divergent bradyrhizobia isolated from Brazilian soils.


Asunto(s)
Bradyrhizobium/aislamiento & purificación , Bradyrhizobium/genética , Inoculantes Agrícolas/aislamiento & purificación , Inoculantes Agrícolas/genética , Vigna/microbiología , Filogenia , Simbiosis , Brasil , ADN Bacteriano/genética , ARN Ribosómico 16S/genética , Genoma Bacteriano , Evolución Molecular , Bradyrhizobium/clasificación , Bradyrhizobium/fisiología , Genómica , Nódulos de las Raíces de las Plantas/microbiología , Inoculantes Agrícolas/clasificación , Inoculantes Agrícolas/fisiología , Vigna/fisiología
5.
Braz J Microbiol ; 49(4): 703-713, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-28410799

RESUMEN

The leguminous inoculation with nodule-inducing bacteria that perform biological nitrogen fixation is a good example of an "eco-friendly agricultural practice". Bradyrhizobium strains BR 3267 and BR 3262 are recommended for cowpea (Vigna unguiculata) inoculation in Brazil and showed remarkable responses; nevertheless neither strain was characterized at species level, which is our goal in the present work using a polyphasic approach. The strains presented the typical phenotype of Bradyrhizobium with a slow growth and a white colony on yeast extract-mannitol medium. Strain BR 3267 was more versatile in its use of carbon sources compared to BR 3262. The fatty acid composition of BR 3267 was similar to the type strain of Bradyrhizobium yuanmingense; while BR 3262 was similar to Bradyrhizobium elkanii and Bradyrhizobium pachyrhizi. Phylogenetic analyses based on 16S rRNA and three housekeeping genes placed both strains within the genus Bradyrhizobium: strain BR 3267 was closest to B. yuanmingense and BR 3262 to B. pachyrhizi. Genome average nucleotide identity and DNA-DNA reassociation confirmed the genomic identification of B. yuanmingense BR 3267 and B. pachyrhizi BR 3262. The nodC and nifH gene analyses showed that strains BR 3267 and BR 3262 hold divergent symbiotic genes. In summary, the results indicate that cowpea can establish effective symbiosis with divergent bradyrhizobia isolated from Brazilian soils.


Asunto(s)
Inoculantes Agrícolas/genética , Inoculantes Agrícolas/aislamiento & purificación , Bradyrhizobium/genética , Bradyrhizobium/aislamiento & purificación , Vigna/microbiología , Inoculantes Agrícolas/clasificación , Inoculantes Agrícolas/fisiología , Bradyrhizobium/clasificación , Bradyrhizobium/fisiología , Brasil , ADN Bacteriano/genética , Evolución Molecular , Genoma Bacteriano , Genómica , Filogenia , ARN Ribosómico 16S/genética , Nódulos de las Raíces de las Plantas/microbiología , Simbiosis , Vigna/fisiología
6.
Braz. j. microbiol ; 47(4): 783-784, Oct.-Dec. 2016.
Artículo en Inglés | LILACS, VETINDEX | ID: biblio-1469630

RESUMEN

The strain BR 3262 was isolated from nodule of cowpea (Vigna unguiculata L. Walp) growing in soil of the Atlantic Forest area in Brazil and it is reported as an efficient nitrogen fixing bacterium associated to cowpea. Firstly, this strain was assigned as Bradyrhizobium elkanii, however, recently a more detailed genetic and molecular characterization has indicated it could be a Bradyrhizobium pachyrhizi species. We report here the draft genome sequence of B. pachyrhizi strain BR 3262, an elite bacterium used as inoculant for cowpea. The whole genome with 116 scaffolds, 8,965,178 bp and 63.8% of C+G content for BR 3262 was obtained using Illumina MiSeq sequencing technology. Annotation was added by the RAST prokaryotic genome annotation service and shown 8369 coding sequences, 52 RNAs genes, classified in 504 subsystems.


Asunto(s)
Bradyrhizobium/clasificación , Bradyrhizobium/genética , Fijación del Nitrógeno , Vigna/microbiología , Nodulación de la Raíz de la Planta
7.
Braz. j. microbiol ; 47(4): 781-782, Oct.-Dec. 2016.
Artículo en Inglés | LILACS, VETINDEX | ID: biblio-1469631

RESUMEN

The strain BR 3267 is a nitrogen-fixing symbiotic bacteria isolated from soil of semi-arid area of Brazilian Northeast using cowpea as the trap plant. This strain is used as commercial inoculant for cowpea and presents high efficient in nitrogen fixation as consequence of its adaptation potential to semi-arid conditions. We report here the draft genome sequence of Bradyrhizobium sp. strain BR 3267, an elite bacterium used as inoculant for cowpea. Whole genome sequencing of BR 3267 using Illumina MiSeq sequencing technology has 55 scaffolds with a total genome size of 7,904,309 bp and C+G 63%. Annotation was added by the RAST prokaryotic genome annotation service and has shown 7314 coding sequences and 52 RNA genes.


Asunto(s)
Bradyrhizobium , Nodulación de la Raíz de la Planta/genética , Vigna/genética , Vigna/microbiología , Fijación del Nitrógeno
8.
Braz J Microbiol ; 47(4): 781-782, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27212153

RESUMEN

The strain BR 3267 is a nitrogen-fixing symbiotic bacteria isolated from soil of semi-arid area of Brazilian Northeast using cowpea as the trap plant. This strain is used as commercial inoculant for cowpea and presents high efficient in nitrogen fixation as consequence of its adaptation potential to semi-arid conditions. We report here the draft genome sequence of Bradyrhizobium sp. strain BR 3267, an elite bacterium used as inoculant for cowpea. Whole genome sequencing of BR 3267 using Illumina MiSeq sequencing technology has 55 scaffolds with a total genome size of 7,904,309bp and C+G 63%. Annotation was added by the RAST prokaryotic genome annotation service and has shown 7314 coding sequences and 52 RNA genes.


Asunto(s)
Bradyrhizobium/clasificación , Bradyrhizobium/genética , Genoma Bacteriano , Genómica , Vigna/microbiología , Composición de Base , Genes Bacterianos , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Sistemas de Lectura Abierta , Nódulos de las Raíces de las Plantas/microbiología , Simbiosis , Vigna/fisiología
9.
Braz J Microbiol ; 47(4): 783-784, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27216893

RESUMEN

The strain BR 3262 was isolated from nodule of cowpea (Vigna unguiculata L. Walp) growing in soil of the Atlantic Forest area in Brazil and it is reported as an efficient nitrogen fixing bacterium associated to cowpea. Firstly, this strain was assigned as Bradyrhizobium elkanii, however, recently a more detailed genetic and molecular characterization has indicated it could be a Bradyrhizobium pachyrhizi species. We report here the draft genome sequence of B. pachyrhizi strain BR 3262, an elite bacterium used as inoculant for cowpea. The whole genome with 116 scaffolds, 8,965,178bp and 63.8% of C+G content for BR 3262 was obtained using Illumina MiSeq sequencing technology. Annotation was added by the RAST prokaryotic genome annotation service and shown 8369 coding sequences, 52 RNAs genes, classified in 504 subsystems.


Asunto(s)
Bradyrhizobium/clasificación , Bradyrhizobium/genética , Genoma Bacteriano , Genómica , Simbiosis , Vigna/microbiología , Vigna/fisiología , Composición de Base , Brasil , Genes Bacterianos , Genómica/métodos , Fijación del Nitrógeno , Sistemas de Lectura Abierta , Nódulos de las Raíces de las Plantas/microbiología
10.
Front Plant Sci ; 7: 2064, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28163711

RESUMEN

Many studies have been pointing to a high diversity of bacteria associated to legume root nodules. Even though most of these bacteria do not form nodules with legumes themselves, it was shown that they might enter infection threads when co-inoculated with rhizobial strains. The aim of this work was to describe the diversity of bacterial communities associated with cowpea (Vigna unguiculata L. Walp) root nodules using 16S rRNA gene amplicon sequencing, regarding the factors plant genotype and soil type. As expected, Bradyrhizobium was the most abundant genus of the detected genera. Furthermore, we found a high bacterial diversity associated to cowpea nodules; OTUs related to the genera Enterobacter, Chryseobacterium, Sphingobacterium, and unclassified Enterobacteriacea were the most abundant. The presence of these groups was significantly influenced by the soil type and, to a lesser extent, plant genotype. Interestingly, OTUs assigned to Chryseobacterium were highly abundant, particularly in samples obtained from an Ultisol soil. We confirmed their presence in root nodules and assessed their diversity using a target isolation approach. Though their functional role still needs to be addressed, we postulate that Chryseobacterium strains might help cowpea plant to cope with salt stress in semi-arid regions.

11.
Genome Announc ; 3(4)2015 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-26159523

RESUMEN

Microvirga vignae is a recently described species of root-nodule bacteria isolated from cowpeas grown in a Brazilian semiarid region. We report here the 6.4-Mb draft genome sequence and annotation of M. vignae type strain BR 3299. This genome information may help to understand the mechanisms underlying the ability of the organism to grow under drought and high-temperatures conditions.

12.
Environ Microbiol Rep ; 6(4): 354-63, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24992534

RESUMEN

Brazilian sugarcane has been shown to obtain part of its nitrogen via biological nitrogen fixation (BNF). Recent reports, based on the culture independent sequencing of bacterial nifH complementary DNA (cDNA) from sugarcane tissues, have suggested that members of the Bradyrhizobium genus could play a role in sugarcane-associated BNF. Here we report on the isolation of Bradyrhizobium spp. isolates and a few other species from roots of sugarcane cultivar RB867515 by two cultivation strategies: direct isolation on culture media and capture of Bradyrhizobium spp. using the promiscuous legume Vigna unguiculata as trap-plant. Both strategies permitted the isolation of genetically diverse Bradyrhizobium spp. isolates, as concluded from enterobacterial repetitive intergenic consensus polymerase chain reaction (PCR) fingerprinting and 16S ribosomal RNA, nifH and nodC sequence analyses. Several isolates presented nifH phylotypes highly similar to nifH cDNA phylotypes detected in field-grown sugarcane by a culture-independent approach. Four isolates obtained by direct plate cultivation were unable to nodulate V. unguiculata and, based on PCR analysis, lacked a nodC gene homologue. Acetylene reduction assay showed in vitro nitrogenase activity for some Bradyrhizobium spp. isolates, suggesting that these bacteria do not require a nodule environment for BNF. Therefore, this study brings further evidence that Bradyrhizobium spp. may play a role in sugarcane-associated BNF under field conditions.


Asunto(s)
Bradyrhizobium/clasificación , Bradyrhizobium/aislamiento & purificación , Endófitos/clasificación , Endófitos/aislamiento & purificación , Saccharum/microbiología , Proteínas Bacterianas/genética , Bradyrhizobium/genética , Bradyrhizobium/crecimiento & desarrollo , Brasil , Análisis por Conglomerados , Medios de Cultivo/química , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Endófitos/genética , Endófitos/crecimiento & desarrollo , Técnicas Microbiológicas , Datos de Secuencia Molecular , Tipificación Molecular , Nitrogenasa/análisis , Filogenia , Nodulación de la Raíz de la Planta , Raíces de Plantas/microbiología , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
13.
Int J Syst Evol Microbiol ; 64(Pt 3): 725-730, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24179178

RESUMEN

16S rRNA gene sequence analysis of eight strains (BR 3299(T), BR 3296, BR 10192, BR 10193, BR 10194, BR 10195, BR 10196 and BR 10197) isolated from nodules of cowpea collected from a semi-arid region of Brazil showed 97 % similarity to sequences of recently described rhizobial species of the genus Microvirga. Phylogenetic analyses of four housekeeping genes (gyrB, recA, dnaK and rpoB), DNA-DNA relatedness and AFLP further indicated that these strains belong to a novel species within the genus Microvirga. Our data support the hypothesis that genes related to nitrogen fixation were obtained via horizontal gene transfer, as sequences of nifH genes were very similar to those found in members of the genera Rhizobium and Mesorhizobium, which are not immediate relatives of the genus Microvirga, as shown by 16S rRNA gene sequence analysis. Phenotypic traits, such as host range and carbon utilization, differentiate the novel strains from the most closely related species, Microvirga lotononidis, Microvirga zambiensis and Microvirga lupini. Therefore, these symbiotic nitrogen-fixing bacteria are proposed to be representatives of a novel species, for which the name Microvirga vignae sp. nov. is suggested. The type strain is BR3299(T) ( = HAMBI 3457(T)).


Asunto(s)
Fabaceae/microbiología , Methylobacteriaceae/clasificación , Filogenia , Nódulos de las Raíces de las Plantas/microbiología , Simbiosis , Análisis del Polimorfismo de Longitud de Fragmentos Amplificados , Técnicas de Tipificación Bacteriana , Brasil , ADN Bacteriano/genética , Genes Bacterianos , Methylobacteriaceae/genética , Methylobacteriaceae/aislamiento & purificación , Datos de Secuencia Molecular , Hibridación de Ácido Nucleico , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...