Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 15431, 2023 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-37723242

RESUMEN

Little is known about the effects of woody plant encroachment-a recent but pervasive phenomenon-on the hydraulic properties of bedrock substrates. Recent work using stream solute concentrations paired with weathering models suggests that woody plant encroachment accelerates limestone weathering. In this field study, we evaluate this hypothesis by examining bedrock in the Edwards Plateau, an extensive karst landscape in Central Texas. We compared a site that has been heavily encroached by woody plants (mainly Quercus fusiformis and Juniperus ashei), with an adjacent site that has been maintained free of encroachment for the past eight decades. Both sites share the same bedrock, as confirmed by trenching, and originally had very few trees, which enabled us to evaluate how encroachment impacted the evolution of hydraulic properties over a period of no more than 80 years. Using in situ permeability tests in boreholes drilled into the weathered bedrock, we found that the mean saturated hydraulic conductivity of the bedrock was higher-by an order of magnitude-beneath woody plants than in the areas where woody plants have been continuously suppressed. Additionally, woody plant encroachment was associated with greater regolith thickness, greater plant rooting depths, significantly lower rock hardness, and a 24-44% increase in limestone matrix porosity. These findings are strong indicators that woody plant encroachment enhances bedrock weathering, thereby amplifying its permeability-a cycle of mutual reinforcement with the potential for substantial changes within a few decades. Given the importance of shallow bedrock for ecohydrological and biogeochemical processes, the broader impacts of woody plant encroachment on weathering rates and permeability warrant further investigation.


Asunto(s)
Carbonato de Calcio , Carbonatos , Permeabilidad , Madera , Árboles
2.
Sci Total Environ ; 852: 158544, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36075421

RESUMEN

Invasion by exotic grasses is transforming drylands across the planet, but the ecohydrological feedbacks of such invasions are not fully understood. For example, in the Sonoran Desert, previous studies have shown that buffelgrass (Cenchrus ciliaris) alters the spatial patterns of soil moisture, leading researchers to hypothesize that such alterations are related to the plants' effects on soil infiltrability. To evaluate this hypothesis, we compared field-saturated hydraulic conductivity (Kfs) in a native shrubland with that in a neighboring savanna extensively dominated by exotic buffelgrass. We measured Kfs during the dormant and growing seasons in both canopy and intercanopy zones. We found that Kfs was generally lower during the dormant season than during the growing season. There were no significant differences between sites during the dormant season, and at both sites, Kfs was 6-7 times higher under shrubs than in the intercanopies. During the growing season, Kfs for the exotic intercanopy was comparable to that for shrub cluster edges (140 mm h-1) and was more than twice that for the native intercanopy. Both shrubs and buffelgrass improved Kfs by reducing soil bulk density (thus increasing porosity). Additionally, surface roughness in the exotic intercanopy was nearly 3 times higher than in the native intercanopy. The combination of greater surface roughness and higher infiltration rates during the growing season most likely alters hydrological connectivity in savannas invaded by exotic grasses such as buffelgrass. By capturing portions of the runoff generated in the intercanopy, these grasses reduce runon into shrub patches, with potentially substantial impacts on native vegetation dynamics and stability.


Asunto(s)
Ecosistema , Suelo , Poaceae , Plantas , Estaciones del Año
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA