Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Vet Res ; 55(1): 36, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38520035

RESUMEN

Equine influenza virus (EIV) remains a threat to horses, despite the availability of vaccines. Strategies to monitor the virus and prevent potential vaccine failure revolve around serological assays, RT-qPCR amplification, and sequencing the viral hemagglutinin (HA) and neuraminidase (NA) genes. These approaches overlook the contribution of other viral proteins in driving virulence. This study assesses the potential of long-read nanopore sequencing for fast and precise sequencing of circulating equine influenza viruses. Therefore, two French Florida Clade 1 strains, including the one circulating in winter 2018-2019 exhibiting more pronounced pathogenicity than usual, as well as the two currently OIE-recommended vaccine strains, were sequenced. Our results demonstrated the reliability of this sequencing method in generating accurate sequences. Sequence analysis of HA revealed a subtle antigenic drift in the French EIV strains, with specific substitutions, such as T163I in A/equine/Paris/1/2018 and the N188T mutation in post-2015 strains; both substitutions were in antigenic site B. Antigenic site E exhibited modifications in post-2018 strains, with the N63D substitution. Segment 2 sequencing also revealed that the A/equine/Paris/1/2018 strain encodes a longer variant of the PB1-F2 protein when compared to other Florida clade 1 strains (90 amino acids long versus 81 amino acids long). Further biological and biochemistry assays demonstrated that this PB1-F2 variant has enhanced abilities to abolish the mitochondrial membrane potential ΔΨm and permeabilize synthetic membranes. Altogether, our results highlight the interest in rapidly characterizing the complete genome of circulating strains with next-generation sequencing technologies to adapt vaccines and identify specific virulence markers of EIV.


Asunto(s)
Enfermedades de los Caballos , Subtipo H3N8 del Virus de la Influenza A , Infecciones por Orthomyxoviridae , Vacunas , Animales , Aminoácidos/genética , Genómica , Caballos , Subtipo H3N8 del Virus de la Influenza A/genética , Infecciones por Orthomyxoviridae/veterinaria , Reproducibilidad de los Resultados , Análisis de Secuencia/veterinaria , Factores de Virulencia
2.
PLoS Pathog ; 18(9): e1010799, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36067253

RESUMEN

The binding of the SARS-CoV-2 spike to angiotensin-converting enzyme 2 (ACE2) promotes virus entry into the cell. Targeting this interaction represents a promising strategy to generate antivirals. By screening a phage-display library of biosynthetic protein sequences build on a rigid alpha-helicoidal HEAT-like scaffold (named αReps), we selected candidates recognizing the spike receptor binding domain (RBD). Two of them (F9 and C2) bind the RBD with affinities in the nM range, displaying neutralisation activity in vitro and recognizing distinct sites, F9 overlapping the ACE2 binding motif. The F9-C2 fusion protein and a trivalent αRep form (C2-foldon) display 0.1 nM affinities and EC50 of 8-18 nM for neutralization of SARS-CoV-2. In hamsters, F9-C2 instillation in the nasal cavity before or during infections effectively reduced the replication of a SARS-CoV-2 strain harbouring the D614G mutation in the nasal epithelium. Furthermore, F9-C2 and/or C2-foldon effectively neutralized SARS-CoV-2 variants (including delta and omicron variants) with EC50 values ranging from 13 to 32 nM. With their high stability and their high potency against SARS-CoV-2 variants, αReps provide a promising tool for SARS-CoV-2 therapeutics to target the nasal cavity and mitigate virus dissemination in the proximal environment.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , Tratamiento Farmacológico de COVID-19 , Proteínas Recombinantes de Fusión , Glicoproteína de la Espiga del Coronavirus , Enzima Convertidora de Angiotensina 2/química , Enzima Convertidora de Angiotensina 2/metabolismo , Antivirales/química , Antivirales/farmacología , Humanos , Peptidil-Dipeptidasa A/metabolismo , Unión Proteica , Proteínas Recombinantes de Fusión/farmacología , Proteínas Recombinantes de Fusión/uso terapéutico , Proteínas Recombinantes/farmacología , Proteínas Recombinantes/uso terapéutico , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo
3.
Viruses ; 14(3)2022 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-35336925

RESUMEN

Influenza virus transcription is catalyzed by the viral RNA-polymerase (FluPol) through a cap-snatching activity. The snatching of the cap of cellular mRNA by FluPol is preceded by its binding to the flexible C-terminal domain (CTD) of the RPB1 subunit of RNA-polymerase II (Pol II). To better understand how FluPol brings the 3'-end of the genomic RNAs in close proximity to the host-derived primer, we hypothesized that FluPol may recognize additional Pol II subunits/domains to ensure cap-snatching. Using binary complementation assays between the Pol II and influenza A FluPol subunits and their structural domains, we revealed an interaction between the N-third domain of PB2 and RPB4. This interaction was confirmed by a co-immunoprecipitation assay and was found to occur with the homologous domains of influenza B and C FluPols. The N-half domain of RPB4 was found to be critical in this interaction. Punctual mutants generated at conserved positions between influenza A, B, and C FluPols in the N-third domain of PB2 exhibited strong transcriptional activity defects. These results suggest that FluPol interacts with several domains of Pol II (the CTD to bind Pol II), initiating host transcription and a second transcription on RPB4 to locate FluPol at the proximity of the 5'-end of nascent host mRNA.


Asunto(s)
Gripe Humana , Orthomyxoviridae , Humanos , Orthomyxoviridae/genética , ARN Polimerasa II/metabolismo , ARN Mensajero/genética , ARN Viral/genética , ARN Viral/metabolismo , ARN Polimerasa Dependiente del ARN/genética , Transcripción Viral , Replicación Viral
4.
Anal Bioanal Chem ; 414(1): 265-276, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33230699

RESUMEN

This study reports the development of a sensitive magnetic bead-based enzyme-linked immunoassay (MELISA) for the pan-reactive detection of the Influenza A virus. The assay combines immunomagnetic beads and biotin-nanoparticle-based detection to quantify a highly conserved viral nucleoprotein in virus lysates. At the capture step, monoclonal antibody-coated magnetic microbeads were used to bind and concentrate the nucleoprotein in samples. The colorimetric detection signal was amplified using biotinylated silica nanoparticles (NP). These nanoparticles were functionalized on the surface with short DNA spacers bearing biotin groups by an automated supported synthesis method performed on nano-on-micro assemblies with a DNA/RNA synthesizer. A biotin-nanoparticle and immunomagnetic bead-based assay was developed. We succeeded in detecting Influenza A viruses directly in the lysis buffer supplemented with 10% saliva to simulate the clinical context. The biotin-nanoparticle amplification step enabled detection limits as low as 3 × 103 PFU mL-1 and 4 × 104 PFU mL-1 to be achieved for the H1N1 and H3N2 strains respectively. In contrast, a classical ELISA test based on the same antibody sandwich showed detection limit of 1.2 × 107 PFU mL-1 for H1N1. The new enhanced MELISA proved to be specific, as no cross-reactivity was found with a porcine respiratory virus (PRRSV). Graphical abstract.


Asunto(s)
Biotina/química , Separación Inmunomagnética , Virus de la Influenza A/aislamiento & purificación , Nanopartículas/química , Anticuerpos Monoclonales , Sensibilidad y Especificidad
5.
Ecotoxicol Environ Saf ; 182: 109421, 2019 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-31301592

RESUMEN

The environmental contamination of soil by metal oxide nanomaterials is a growing global concern because of their potential toxicity. We investigated the effects of Mg doped ZnO (Mg-nZnO) nanoparticles on a model soil microorganism Bacillus subtilis. Mg-nZnO exhibited only a moderate toxic effect on B. subtilis vegetative cells but was able to prevent biofilm formation and destroy already formed biofilms. Similarly, Mg-nZnO (≤1 mg/mL) was moderately toxic towards Listeria monocytogenes, Staphylococcus aureus, Escherichia coli, Salmonella enterica, Saccharomyces cerevisiae and murine macrophages. Engineered Mg-nZnO produced H2O2 and O2•- radicals in solutions of various salt and organic molecule compositions. A quantitative proteomic analysis of B. subtilis membrane proteins showed that Mg-nZnO increased the expression of proteins involved in detoxification of ROS, translation and biofilm formation. Overall, our results suggest that Mg-nZnO released into the environment may hinder the spreading, colonization and biofilm formation by B. subtilis but also induce a mechanism of bacterial adaptation.


Asunto(s)
Bacillus subtilis/efectos de los fármacos , Nanopartículas/toxicidad , Contaminantes del Suelo/toxicidad , Óxido de Zinc/toxicidad , Animales , Biopelículas , Escherichia coli/efectos de los fármacos , Peróxido de Hidrógeno/metabolismo , Ratones , Óxidos/metabolismo , Proteómica , Suelo , Microbiología del Suelo , Staphylococcus aureus
6.
Sci Rep ; 8(1): 12276, 2018 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-30115985

RESUMEN

The increasing number of multidrug resistant bacteria raises a serious public-health concern, which is exacerbated by the lack of new antibiotics. Metal oxide nanoparticles are already applied as an antibacterial additive in various products used in everyday life but their modes of action have remained unclear. Moreover, their potential negative effects to human health are still under evaluation. We explored effects of mixed metal oxide Zn0.15Mg0.85O on Bacillus subtilis, as a model bacterial organism, and on murine macrophages. Zn0.15Mg0.85O killed planktonic bacterial cells and prevented biofilm formation by causing membrane damages, oxidative stress and metal ions release. When exposed to a sub-inhibitory amount of Zn0.15Mg0.85O, B. subtilis up-regulates proteins involved in metal ions export, oxidative stress response and maintain of redox homeostasis. Moreover, expression profiles of proteins associated with information processing, metabolism, cell envelope and cell division were prominently changed. Multimode of action of Zn0.15Mg0.85O suggests that no single strategy may provide bacterial resistance. Macrophages tolerated Zn0.15Mg0.85O to some extend by both the primary phagocytosis of nanoparticles and the secondary phagocytosis of damaged cells. Bacterial co-treatment with ciprofloxacin and non-toxic amount of Zn0.15Mg0.85O increased antibiotic activity towards B. subtilis and E. coli.


Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Bacillus subtilis/efectos de los fármacos , Macrófagos/efectos de los fármacos , Óxido de Magnesio/química , Nanopartículas/química , Óxidos/química , Óxidos/farmacología , Óxido de Zinc/química , Animales , Antibacterianos/toxicidad , Bacillus subtilis/metabolismo , Bacillus subtilis/fisiología , Biopelículas/efectos de los fármacos , Ciprofloxacina/farmacología , Sinergismo Farmacológico , Ratones , Óxidos/toxicidad , Tamaño de la Partícula , Plancton/citología , Células RAW 264.7 , Especies Reactivas de Oxígeno/metabolismo
7.
J Med Chem ; 61(16): 7202-7217, 2018 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-30028133

RESUMEN

The nucleoprotein (NP) of influenza A virus (IAV) required for IAV replication is a promising target for new antivirals. We previously identified by in silico screening naproxen being a dual inhibitor of NP and cyclooxygenase COX2, thus combining antiviral and anti-inflammatory effects. However, the recently shown strong COX2 antiviral potential makes COX2 inhibition undesirable. Here we designed and synthesized two new series of naproxen analogues called derivatives 2, 3, and 4 targeting highly conserved residues of the RNA binding groove, stabilizing NP monomer without inhibiting COX2. Derivative 2 presented improved antiviral effects in infected cells compared to that of naproxen and afforded a total protection of mice against a lethal viral challenge. Derivative 4 also protected infected cells challenged with circulating 2009-pandemic and oseltamivir-resistant H1N1 virus. This improved antiviral effect likely results from derivatives 2 and 4 inhibiting NP-RNA and NP-polymerase acidic subunit PA N-terminal interactions.


Asunto(s)
Antivirales/química , Antivirales/farmacología , Inhibidores de la Ciclooxigenasa 2/farmacología , Virus de la Influenza A/efectos de los fármacos , Naproxeno/análogos & derivados , Células A549 , Animales , Sitios de Unión , Inhibidores de la Ciclooxigenasa 2/química , Perros , Diseño de Fármacos , Reposicionamiento de Medicamentos , Farmacorresistencia Viral/efectos de los fármacos , Femenino , Humanos , Virus de la Influenza A/patogenicidad , Gripe Humana/tratamiento farmacológico , Gripe Humana/patología , Células de Riñón Canino Madin Darby , Ratones Endogámicos C57BL , Simulación del Acoplamiento Molecular , Naproxeno/farmacología , Proteínas de la Nucleocápside , Oseltamivir/farmacología , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , Resonancia por Plasmón de Superficie , Proteínas del Núcleo Viral/química , Proteínas del Núcleo Viral/metabolismo
8.
Biochim Biophys Acta Gen Subj ; 1862(6): 1263-1275, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29524539

RESUMEN

BACKGROUND: Targeting cells of the host immune system is a promising approach to fight against Influenza A virus (IAV) infection. Macrophage cells use the NADPH oxidase-2 (NOX2) enzymatic complex as a first line of defense against pathogens by generating superoxide ions O2- and releasing H2O2. Herein, we investigated whether targeting membrane -embedded NOX2 decreased IAV entry via raft domains and reduced inflammation in infected macrophages. METHODS: Confocal microscopy and western blots monitored levels of the viral nucleoprotein NP and p67phox, NOX2 activator subunit, Elisa assays quantified TNF-α levels in LPS or IAV-activated mouse or porcine alveolar macrophages pretreated with a fluorescent NOX inhibitor, called nanoshutter NS1. RESULTS: IAV infection in macrophages promoted p67phox translocation to the membrane, rafts clustering and activation of the NOX2 complex at early times. Disrupting rafts reduced intracellular viral NP. NS1 markedly reduced raft clustering and viral entry by binding to the C-terminal of NOX2 also characterized in vitro. NS1 decrease of TNF-α release depended on the cell type. CONCLUSION: NOX2 participated in IAV entry and raft-mediated endocytosis. NOX2 inhibition by NS1 reduced viral entry. NS1 competition with p67phox for NOX2 binding shown by in silico models and cell-free assays was in agreement with NS1 inhibiting p67phox translocation to membrane-embedded NOX2 in mouse and porcine macrophages. GENERAL SIGNIFICANCE: We introduce NS1 as a compound targeting NOX2, a critical enzyme controlling viral levels and inflammation in macrophages and discuss the therapeutic relevance of targeting the C-terminal of NADPH oxidases by probes like NS1 in viral infections.


Asunto(s)
Inflamación/inmunología , Macrófagos/inmunología , NADPH Oxidasa 2/antagonistas & inhibidores , Infecciones por Orthomyxoviridae/inmunología , Fosfoproteínas/antagonistas & inhibidores , Proteínas no Estructurales Virales/metabolismo , Internalización del Virus , Animales , Células Cultivadas , Inflamación/metabolismo , Inflamación/virología , Virus de la Influenza A , Macrófagos/metabolismo , Macrófagos/virología , Ratones , Infecciones por Orthomyxoviridae/metabolismo , Infecciones por Orthomyxoviridae/virología
9.
Antimicrob Agents Chemother ; 57(5): 2231-42, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23459490

RESUMEN

The nucleoprotein (NP) binds the viral RNA genome and associates with the polymerase in a ribonucleoprotein complex (RNP) required for transcription and replication of influenza A virus. NP has no cellular counterpart, and the NP sequence is highly conserved, which led to considering NP a hot target in the search for antivirals. We report here that monomeric nucleoprotein can be inhibited by a small molecule binding in its RNA binding groove, resulting in a novel antiviral against influenza A virus. We identified naproxen, an anti-inflammatory drug that targeted the nucleoprotein to inhibit NP-RNA association required for NP function, by virtual screening. Further docking and molecular dynamics (MD) simulations identified in the RNA groove two NP-naproxen complexes of similar levels of interaction energy. The predicted naproxen binding sites were tested using the Y148A, R152A, R355A, and R361A proteins carrying single-point mutations. Surface plasmon resonance, fluorescence, and other in vitro experiments supported the notion that naproxen binds at a site identified by MD simulations and showed that naproxen competed with RNA binding to wild-type (WT) NP and protected active monomers of the nucleoprotein against proteolytic cleavage. Naproxen protected Madin-Darby canine kidney (MDCK) cells against viral challenges with the H1N1 and H3N2 viral strains and was much more effective than other cyclooxygenase inhibitors in decreasing viral titers of MDCK cells. In a mouse model of intranasal infection, naproxen treatment decreased the viral titers in mice lungs. In conclusion, naproxen is a promising lead compound for novel antivirals against influenza A virus that targets the nucleoprotein in its RNA binding groove.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Antivirales/farmacología , Naproxeno/farmacología , Nucleoproteínas/antagonistas & inhibidores , ARN Viral/antagonistas & inhibidores , Proteínas Virales/antagonistas & inhibidores , Animales , Antiinflamatorios no Esteroideos/química , Antivirales/química , Sitios de Unión , Perros , Descubrimiento de Drogas , Reposicionamiento de Medicamentos , Subtipo H1N1 del Virus de la Influenza A/química , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Subtipo H1N1 del Virus de la Influenza A/metabolismo , Subtipo H3N2 del Virus de la Influenza A/química , Subtipo H3N2 del Virus de la Influenza A/efectos de los fármacos , Subtipo H3N2 del Virus de la Influenza A/metabolismo , Células de Riñón Canino Madin Darby , Ratones , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Naproxeno/química , Nucleoproteínas/química , Nucleoproteínas/metabolismo , Infecciones por Orthomyxoviridae/tratamiento farmacológico , Infecciones por Orthomyxoviridae/virología , Mutación Puntual , Unión Proteica , ARN Viral/química , ARN Viral/metabolismo , Proteínas Virales/química , Proteínas Virales/metabolismo
10.
Hum Immunol ; 70(12): 1016-9, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19664669

RESUMEN

Influenza virus type A (IAV) infections constitute an important economic burden and raise health-care problems. Host defense mechanisms usually clear IAV infections after a few days by exploiting a variety of cellular immune responses. However, increasing the production of immunosubversive molecules is a mechanism by which viruses escape host surveillance. In this regard, the nonclassical HLA class I molecule HLA-G displays strong tolerogenic properties. We show here that several strains of IAV differently upregulate HLA-G expression, at both the mRNA and protein levels, in alveolar epithelial cells. Thus the virulence of IAV may be caused by the capability of different strains to upregulate HLA-G allowing their escape from host immune responses.


Asunto(s)
Antígenos HLA/biosíntesis , Antígenos de Histocompatibilidad Clase I/biosíntesis , Tolerancia Inmunológica , Virus de la Influenza A/inmunología , Gripe Humana/inmunología , Alveolos Pulmonares/inmunología , Animales , Línea Celular , Perros , Antígenos HLA/análisis , Antígenos HLA-G , Antígenos de Histocompatibilidad Clase I/análisis , Humanos , Alveolos Pulmonares/virología , ARN Mensajero/inmunología , ARN Mensajero/metabolismo , Mucosa Respiratoria/inmunología , Mucosa Respiratoria/virología , Regulación hacia Arriba
11.
Virology ; 371(2): 350-61, 2008 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-17976679

RESUMEN

We characterized tellina virus 1 (TV-1), a birnavirus isolated from the marine bivalve mollusk Tellina tenuis. Genome sequence analysis established that TV-1 is representative of a viral cluster distant from other birnaviruses. The maturation process of the polyprotein encoded by the genomic segment A was delineated with the identification of the N-termini of the viral protease VP4 and the ribonucleoprotein VP3, and the characterization of peptides deriving from the processing of pVP2, the VP2 capsid protein precursor. One of these peptides was shown to possess a membrane-disrupting domain. Like the blotched snakehead virus, the polyprotein exhibits a non-structural polypeptide (named [X]) located between pVP2 and VP4. Mutagenesis analysis allowed the identification in VP4 of a catalytic Ser-Lys dyad that does not possess the common Gly-X-Ser signature of the serine hydrolases. The genomic segment B encodes the viral RNA-dependent RNA-polymerase VP1 with the unique sequence motif arrangement identified in other birnavirus VP1s.


Asunto(s)
Aquabirnavirus/clasificación , Birnaviridae/clasificación , Bivalvos/virología , Genoma Viral , Poliproteínas , Análisis de Secuencia de ADN , Secuencia de Aminoácidos , Animales , Aquabirnavirus/química , Aquabirnavirus/genética , Aquabirnavirus/metabolismo , Birnaviridae/genética , Línea Celular Tumoral , Clonación Molecular , Modelos Moleculares , Datos de Secuencia Molecular , Péptidos/química , Péptidos/genética , Péptidos/metabolismo , Poliproteínas/química , Poliproteínas/genética , Poliproteínas/metabolismo , Serina Endopeptidasas/metabolismo , Proteínas Virales/química , Proteínas Virales/genética , Proteínas Virales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA