Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(6)2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35328580

RESUMEN

A series of eighteen 4-chlorocinnamanilides and eighteen 3,4-dichlorocinnamanilides were designed, prepared and characterized. All compounds were evaluated for their activity against gram-positive bacteria and against two mycobacterial strains. Viability on both cancer and primary mammalian cell lines was also assessed. The lipophilicity of the compounds was experimentally determined and correlated together with other physicochemical properties of the prepared derivatives with biological activity. 3,4-Dichlorocinnamanilides showed a broader spectrum of action and higher antibacterial efficacy than 4-chlorocinnamanilides; however, all compounds were more effective or comparable to clinically used drugs (ampicillin, isoniazid, rifampicin). Of the thirty-six compounds, six derivatives showed submicromolar activity against Staphylococcus aureus and clinical isolates of methicillin-resistant S. aureus (MRSA). (2E)-N-[3,5-bis(trifluoromethyl)phenyl]- 3-(4-chlorophenyl)prop-2-enamide was the most potent in series 1. (2E)-N-[3,5-bis(Trifluoromethyl)phenyl]-3-(3,4-dichlorophenyl)prop-2-enamide, (2E)-3-(3,4-dichlorophenyl)-N-[3-(trifluoromethyl)phenyl]prop-2-enamide, (2E)-3-(3,4-dichloro- phenyl)-N-[4-(trifluoromethyl)phenyl]prop-2-enamide and (2E)-3-(3,4-dichlorophenyl)- N-[4-(trifluoromethoxy)phenyl]prop-2-enamide were the most active in series 2 and in addition to activity against S. aureus and MRSA were highly active against Enterococcus faecalis and vancomycin-resistant E. faecalis isolates and against fast-growing Mycobacterium smegmatis and against slow-growing M. marinum, M. tuberculosis non-hazardous test models. In addition, the last three compounds of the above-mentioned showed insignificant cytotoxicity to primary porcine monocyte-derived macrophages.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Mycobacterium tuberculosis , Infecciones Estafilocócicas , Ampicilina/farmacología , Animales , Antibacterianos/farmacología , Mamíferos , Pruebas de Sensibilidad Microbiana , Staphylococcus aureus , Porcinos
2.
Bioorg Chem ; 104: 104298, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33011537

RESUMEN

Extensive phytochemical analysis of the CHCl3-soluble part of an ethanolic extract of branches and twigs of Broussonetia papyrifera led to the isolation of fourteen compounds, including a novel 5,11-dioxabenzo[b]fluoren-10-one derivative named broussofluorenone C (12). The isolated compounds 1-14 were characterized based on their NMR and HRMS data, and examined for their anti-inflammatory activities in LPS-stimulated THP-1 cells as well as for their cellular antioxidant effects. Compounds 7-10 and 12 showed inhibitory effects on NF-κB/AP-1 activation and compounds 7-9 were subsequently confirmed to suppress the secretion of both IL-1ß and TNF-α in LPS-stimulated THP-1 cells more significantly than the prednisone used as a positive control. In the CAA assay, compound 10 exhibited the greatest antioxidant effect, greater than that of the quercetin used as a positive control. The results show possible beneficial effects and utilization of B. papyrifera wood in the treatment of inflammatory diseases as well as oxidative stress.


Asunto(s)
Antiinflamatorios/farmacología , Antioxidantes/farmacología , Broussonetia/química , Antiinflamatorios/química , Antiinflamatorios/aislamiento & purificación , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Humanos , Interleucina-1beta/antagonistas & inhibidores , Interleucina-1beta/biosíntesis , Lipopolisacáridos/antagonistas & inhibidores , Lipopolisacáridos/farmacología , Estructura Molecular , FN-kappa B/análisis , FN-kappa B/antagonistas & inhibidores , FN-kappa B/biosíntesis , Estrés Oxidativo/efectos de los fármacos , Relación Estructura-Actividad , Células THP-1 , Factor de Transcripción AP-1/análisis , Factor de Transcripción AP-1/antagonistas & inhibidores , Factor de Transcripción AP-1/biosíntesis , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Factor de Necrosis Tumoral alfa/biosíntesis
3.
J Ethnopharmacol ; 263: 113147, 2020 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-32736058

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Macaranga Thou. (Euphorbiaceae) is a large genus that comprises over 300 species distributed between Western Africa and the islands of the South Pacific. Plants of this genus have a long-standing history of use in traditional medicine for different purposes, including the treatment of inflammation. Fresh and dried leaves of certain Macaranga species (e.g. M. tanarius (L.) Müll.Arg.), have been used to treat cuts, bruises, boils, swellings, sores and covering of wounds in general. Several reports described Macaranga spp. being a rich source of polyphenols, such as prenylated stilbenoids and flavonoids, mostly responsible for its biological activity. Similarly, an abundant content of prenylated stilbenes was also described in M. siamensis S.J.Davies, species recently identified (2001) in Thailand. While the respective biological activity of the prenylated stilbenes from M. siamensis was poorly investigated to date, our recent study pointed out the interest as the natural source of several novel anti-inflammatory stilbenoids isolated from this species. AIM OF THE STUDY: This work investigated the potential anti-inflammatory effects of the stilbenoid macasiamenene F (MF) isolated from M. siamensis S.J.Davies (Euphorbiaceae) on the lipopolysaccharide (LPS)-induced inflammation-like response of monocytes and microglia, major cells involved in the peripheral and central inflammatory response, respectively. MATERIALS AND METHODS: LPS-induced stimulation of TLR4 signaling led to the activation of inflammatory pathways in in vitro models of THP-1 and THP-1-XBlue™-MD2-CD14 human monocytes, BV-2 mouse microglia, and an ex vivo model of brain-sorted mouse microglia. The ability of the stilbenoid MF to intervene in the IкB/NF-кB and MAPKs/AP-1 inflammatory cascade was investigated. The gene and protein expressions of the pro-inflammatory cytokines IL-1ß and TNF-α were evaluated at the transcription and translation levels. The protective effect of MF against LPS-triggered microglial loss was assessed by cell counting and the LDH assay. RESULTS: MF demonstrated beneficial effects, reducing both monocyte and microglial inflammation as assessed in vitro. It efficiently inhibited the degradation of IкBα, thereby reducing the NF-кB activity and TNF-α expression in human monocytes. Furthermore, the LPS-induced expression of IL-1ß and TNF-α in microglia was dampened by pre-, co-, or post-treatment with MF. In addition to its anti-inflammatory effect, MF demonstrated a cytoprotective effect against the LPS-induced death of BV-2 microglia. CONCLUSION: Our research into anti-inflammatory and protective effects of MF has shown that it is a promising candidate for further in vitro and in vivo investigations of MF interventions with respect to acute and chronic inflammation, including potentially beneficial effects on the inflammatory component of brain diseases such as stroke and Alzheimer's disease.


Asunto(s)
Antiinflamatorios/uso terapéutico , Citoprotección/efectos de los fármacos , Euphorbiaceae , Microglía/efectos de los fármacos , Monocitos/efectos de los fármacos , Prenilación/efectos de los fármacos , Estilbenos/uso terapéutico , Animales , Antiinflamatorios/aislamiento & purificación , Antiinflamatorios/farmacología , Línea Celular Tumoral , Células Cultivadas , Citoprotección/fisiología , Relación Dosis-Respuesta a Droga , Humanos , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Mediadores de Inflamación/antagonistas & inhibidores , Mediadores de Inflamación/metabolismo , Lipopolisacáridos/toxicidad , Masculino , Ratones , Ratones Endogámicos C57BL , Microglía/metabolismo , Monocitos/metabolismo , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Prenilación/fisiología , Estilbenos/aislamiento & purificación , Estilbenos/farmacología
4.
Biomolecules ; 9(9)2019 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-31505897

RESUMEN

The stilbenoids, a group of naturally occurring phenolic compounds, are found in a variety of plants, including some berries that are used as food or for medicinal purposes. They are known to be beneficial for human health as anti-inflammatory, chemopreventive, and antioxidative agents. We have investigated a group of 19 stilbenoid substances in vitro using a cellular model of THP-1 macrophage-like cells and pyocyanin-induced oxidative stress to evaluate their antioxidant or pro-oxidant properties. Then we have determined any effects that they might have on the expression of the enzymes catalase, glutathione peroxidase, and heme oxygenase-1, and their effects on the activation of Nrf2. The experimental results showed that these stilbenoids could affect the formation of reactive oxygen species in a cellular model, producing either an antioxidative or pro-oxidative effect, depending on the structure pinostilbene (2) worked as a pro-oxidant and also decreased expression of catalase in the cell culture. Piceatannol (4) had shown reactive oxygen species (ROS) scavenging activity, whereas isorhapontigenin (18) had a mild direct antioxidant effect and activated Nrf2-antioxidant response element (ARE) system and elevated expression of Nrf2 and catalase. Their effects shown on cells in vitro warrant their further study in vivo.


Asunto(s)
Antioxidantes/química , Antioxidantes/farmacología , Estilbenos/química , Estilbenos/farmacología , Elementos de Respuesta Antioxidante/efectos de los fármacos , Células Hep G2 , Humanos , Peroxidación de Lípido/efectos de los fármacos , Factor 2 Relacionado con NF-E2/genética , Piocianina/química , Tiobarbitúricos/química
5.
J Nat Prod ; 82(7): 1839-1848, 2019 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-31268709

RESUMEN

Stilbenoids are important components of foods (e.g., peanuts, grapes, various edible berries), beverages (wine, white tea), and medicinal plants. Many publications have described the anti-inflammatory potential of stilbenoids, including the widely known trans-resveratrol and its analogues. However, comparatively little information is available regarding the activity of their prenylated derivatives. One new prenylated stilbenoid (2) was isolated from Artocarpus altilis and characterized structurally based on 1D and 2D NMR analysis and HRMS. Three other prenylated stilbenoids were prepared synthetically (9-11). Their antiphlogistic potential was determined by testing them together with known natural prenylated stilbenoids from Macaranga siamensis and Artocarpus heterophyllus in both cell-free and cell assays. The inhibition of 5-lipoxygenase (5-LOX) was also shown by simulated molecular docking for the most active stilbenoids in order to elucidate the mode of interaction between these compounds and the enzyme. Their effects on the pro-inflammatory nuclear factor-κB (NF-κB) and the activator protein 1 (AP-1) signaling pathway were also analyzed. The THP1-XBlue-MD2-CD14 cell line was used as a model for determining their anti-inflammatory potential, and lipopolysaccharide (LPS) stimulation of Toll-like receptor 4 induced a signaling cascade leading to the activation of NF-κB/AP-1. The ability of prenylated stilbenoids to attenuate the production of pro-inflammatory cytokines tumor necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß) was further evaluated using LPS-stimulated THP-1 macrophages.


Asunto(s)
Inflamación/prevención & control , Lipooxigenasas/metabolismo , FN-kappa B/antagonistas & inhibidores , Prenilación , Prostaglandina-Endoperóxido Sintasas/metabolismo , Transducción de Señal/efectos de los fármacos , Estilbenos/farmacología , Factor de Transcripción AP-1/antagonistas & inhibidores , Línea Celular , Inhibidores Enzimáticos/farmacología , Humanos
6.
Food Chem ; 285: 431-440, 2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-30797367

RESUMEN

Stilbenoids represent a large group of bioactive compounds, which occur in food and medicinal plants. Twenty-five stilbenoids were screened in vitro for their ability to inhibit COX-1, COX-2 and 5-LOX. Piceatannol and pinostilbene showed activity comparable to the zileuton and ibuprofen, respectively. The anti-inflammatory potential of stilbenoids was further evaluated using THP-1 human monocytic leukemia cell line. Tests of the cytotoxicity on the THP-1 and HCT116 cell lines showed very low toxic effects. The tested stilbenoids were evaluated for their ability to attenuate the LPS-stimulated activation of NF-κB/AP-1. Most of the tested substances reduced the activity of NF-κB/AP-1 and later attenuated the expression of TNF-α. The effects of selected stilbenoids were further investigated on inflammatory signaling pathways. Non-prenylated stilbenoids regulated attenuation of NF-ĸB/AP-1 activity upstream by inhibiting the phosphorylation of MAPKs. A docking study used to in silico analyze the tested compounds confirmed their interaction with NF-ĸB, COX-2 and 5-LOX.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Estilbenos/química , Estilbenos/farmacología , Antiinflamatorios no Esteroideos/química , Inhibidores de la Ciclooxigenasa 2/química , Inhibidores de la Ciclooxigenasa 2/farmacología , Evaluación Preclínica de Medicamentos/métodos , Células HCT116 , Humanos , Lipopolisacáridos/farmacología , Inhibidores de la Lipooxigenasa/química , Inhibidores de la Lipooxigenasa/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Simulación del Acoplamiento Molecular , FN-kappa B/metabolismo , Prenilación , Transducción de Señal/efectos de los fármacos , Factor de Transcripción AP-1/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
7.
Viruses ; 10(7)2018 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-29986399

RESUMEN

Herpes simplex virus (HSV) causes numerous mild-to-serious human diseases, including mucocutaneous herpes infections and life-threatening herpes encephalitis. Moreover, herpes viral lesions can be complicated by inflammation and secondary bacterial infections. The development of resistance to antiviral drugs along with the undesirable side effects of these drugs are relevant argue for the development of new anti-HSV drugs with diverse mechanisms of action. Eucalyptus extracts have been used for decades to combat various infectious diseases. We isolated and studied 12 pure compounds and one mixture of two constitutional isomers from the leaves and twigs of E. globulus. The structures were identified by spectroscopic methods (NMR, HR-MS, IR) and all of them were tested for antiherpetic activity against the replication of antigen types HSV-1 and HSV-2. Tereticornate A (12) (IC50: 0.96 µg/mL; selectivity index CC50/IC50: 218.8) showed the strongest activity in the anti-HSV-1 assay, even greater than acyclovir (IC50: 1.92 µg/mL; selectivity index CC50/IC50: 109.4), a standard antiviral drug. Cypellocarpin C (5) (EC50: 0.73 µg/mL; selectivity index CC50/EC50: 287.7) showed the most potent anti-HSV-2 activity, also more intensive than acyclovir (EC50: 1.75 µg/mL; selectivity index CC50/EC50: 120.0). The antimicrobial activity of the isolated compounds was also evaluated against the bacteria Staphylococcus aureus, Bacillus cereus, Escherichia coli, and Pseudomonas aeruginosa and the yeast Candida albicans. The anti-inflammatory potential was examined using LPS-stimulated THP-1-XBlue™-MD2-CD14 and THP-1 macrophages and focusing on the influences of the NF-κB/AP-1 activity and the secretion of pro-inflammatory cytokines IL-1ß and TNF-α.


Asunto(s)
Antiinfecciosos/farmacología , Antiinflamatorios/farmacología , Eucalyptus/química , Herpes Simple/virología , Simplexvirus/efectos de los fármacos , Simplexvirus/fisiología , Animales , Antibacterianos/química , Antibacterianos/farmacología , Antiinfecciosos/química , Antiinflamatorios/química , Antioxidantes/metabolismo , Antivirales/química , Antivirales/farmacología , Línea Celular , Supervivencia Celular/efectos de los fármacos , Chlorocebus aethiops , Citocinas/metabolismo , Herpes Simple/metabolismo , Humanos , FN-kappa B/metabolismo , Extractos Vegetales/química , Extractos Vegetales/farmacología , Especies Reactivas de Oxígeno/metabolismo , Factor de Transcripción AP-1/metabolismo , Células Vero
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...