RESUMEN
AIMS: Aortic valve calcification (AVC) of surgical valve bioprostheses (BPs) has been poorly explored. We aimed to evaluate in vivo and ex vivo BP AVCs and its prognosis value. METHODS AND RESULTS: Between 2011 and 2019, AVC was assessed using in vivo computed tomography (CT) in 361 patients who had undergone surgical valve replacement 6.4 ± 4.3 years earlier. Ex vivo CT scans were performed for 37 explanted BPs. The in vivo CT scans were interpretable for 342 patients (19 patients [5.2%] were excluded). These patients were 77.2 ± 9.1 years old, and 64.3% were male. Mean in vivo AVC was 307 ± 500â Agatstonâ units (AU). The AVC was 562 ± 570â AU for the 183 (53.5%) patients with structural valve degeneration (SVD) and 13 ± 43â AU for those without SVD (P < 0.0001). In vivo and ex vivo AVCs were strongly correlated (r = 0.88, P < 0.0001). An in vivo AVC > 100â AU (n = 147, 43%) had a specificity of 96% for diagnosing Stage 2-3 SVD (area under the curve = 0.92). Patients with AVC > 100â AU had a worse outcome compared with those with AVC ≤ 100â AU (n = 195). In multivariable analysis, AVC was a predictor of overall mortality (hazard ratio [HR] and 95% confidence interval = 1.16 [1.04-1.29]; P = 0.006), cardiovascular mortality (HR = 1.22 [1.04-1.43]; P = 0.013), cardiovascular events (HR = 1.28 [1.16-1.41]; P < 0.0001), and re-intervention (HR = 1.15 [1.06-1.25]; P < 0.0001). After adjustment for Stage 2-3 SVD diagnosis, AVC remained a predictor of overall mortality (HR = 1.20 [1.04-1.39]; P = 0.015) and cardiovascular events (HR = 1.25 [1.09-1.43]; P = 0.001). CONCLUSION: CT scan is a reliable tool to assess BP leaflet calcification. An AVC > 100â AU is tightly associated with SVD and it is a strong predictor of overall mortality and cardiovascular events.