Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Clin Sci (Lond) ; 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39288030

RESUMEN

Iron deficiency (ID) is common during gestation and in early infancy and has been shown to adversely affect cardiac development and function, which could lead to lasting cardiovascular consequences. Ketone supplementation has been shown to confer cardioprotective effects in numerous disease models. Here we tested the hypothesis that maternal ketone supplementation during gestation would mitigate cardiac dysfunction in ID neonates. Female Sprague Dawley rats were fed an iron-restricted or iron-replete diet before and throughout pregnancy. Throughout gestation, iron-restricted dams were given either a daily subcutaneous injection of ketone solution (containing ß-hydroxybutyrate [ßOHB]) or saline (vehicle). Neonatal offspring cardiac function was assessed by echocardiography at postnatal days (PD)3 and 13. Hearts and livers were collected post-mortem for assessments of mitochondrial function and gene expression profiles of markers oxidative stress and inflammation. Maternal iron restriction caused neonatal anemia and asymmetric growth restriction at all time points assessed, and maternal ßOHB treatment had no effect on these outcomes. Echocardiography revealed reduced ejection fraction despite enlarged hearts (relative to body weight) in ID offspring, resulting in impaired oxygen delivery, which was attenuated by maternal ßOHB supplementation. Further, maternal ketone supplementation affected biochemical markers of mitochondrial function, oxidative stress and inflammation in hearts of neonates, implicating these pathways in the protective effects conferred by ßOHB. In summary, ßOHB supplementation confers protection against cardiac dysfunction in ID neonates, and could have implications for the treatment of anemic babies.

2.
Artículo en Inglés | MEDLINE | ID: mdl-39158488

RESUMEN

Mitochondria play a key role in aging. Here, we measured integrated mitochondrial functions in experimentally evolved lines of the seed beetle Acanthoscelides obtectus that were selected for early (E) or late (L) reproduction for nearly four decades. The two lines have markedly different lifespans (8 days and 13 days in the E and L lines, respectively). The contribution of the NADH pathway to maximal flux was lower in the L compared to the E beetles at young stages, associated to increased control by complex I. In contrast, the contribution of the Succinate pathway was higher in the L than in the E line, while the Proline pathway showed no differences between the lines. Our data suggest that selection of age at reproduction leads to a modulation of complex I activity in mitochondria and that mitochondria are a functional link between evolutionary and mechanistic theories of aging.

4.
Int J Mol Sci ; 24(17)2023 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-37686430

RESUMEN

Prenatal hypoxia is associated with placental oxidative stress, leading to impaired fetal growth and an increased risk of cardiovascular disease in the adult offspring; however, the mechanisms are unknown. Alterations in mitochondrial function may result in impaired cardiac function in offspring. In this study, we hypothesized that cardiac mitochondrial function is impaired in adult offspring exposed to intrauterine hypoxia, which can be prevented by placental treatment with a nanoparticle-encapsulated mitochondrial antioxidant (nMitoQ). Cardiac mitochondrial respiration was assessed in 4-month-old rat offspring exposed to prenatal hypoxia (11% O2) from gestational day (GD)15-21 receiving either saline or nMitoQ on GD 15. Prenatal hypoxia did not alter cardiac mitochondrial oxidative phosphorylation capacity in the male offspring. In females, the NADH + succinate pathway capacity decreased by prenatal hypoxia and tended to be increased by nMitoQ. Prenatal hypoxia also decreased the succinate pathway capacity in females. nMitoQ treatment increased respiratory coupling efficiency in prenatal hypoxia-exposed female offspring. In conclusion, prenatal hypoxia impaired cardiac mitochondrial function in adult female offspring only, which was improved with prenatal nMitoQ treatment. Therefore, treatment strategies targeting placental oxidative stress in prenatal hypoxia may reduce the risk of cardiovascular disease in adult offspring by improving cardiac mitochondrial function in a sex-specific manner.


Asunto(s)
Antioxidantes , Enfermedades Cardiovasculares , Femenino , Masculino , Embarazo , Animales , Ratas , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Placenta , Vitaminas , Hipoxia/complicaciones , Hipoxia/tratamiento farmacológico , Mitocondrias , Succinatos
5.
Cell Rep ; 42(1): 111899, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36586409

RESUMEN

Endoplasmic reticulum (ER) homeostasis requires molecular regulators that tailor mitochondrial bioenergetics to the needs of protein folding. For instance, calnexin maintains mitochondria metabolism and mitochondria-ER contacts (MERCs) through reactive oxygen species (ROS) from NADPH oxidase 4 (NOX4). However, induction of ER stress requires a quick molecular rewiring of mitochondria to adapt to new energy needs. This machinery is not characterized. We now show that the oxidoreductase ERO1⍺ covalently interacts with protein kinase RNA-like ER kinase (PERK) upon treatment with tunicamycin. The PERK-ERO1⍺ interaction requires the C-terminal active site of ERO1⍺ and cysteine 216 of PERK. Moreover, we show that the PERK-ERO1⍺ complex promotes oxidization of MERC proteins and controls mitochondrial dynamics. Using proteinaceous probes, we determined that these functions improve ER-mitochondria Ca2+ flux to maintain bioenergetics in both organelles, while limiting oxidative stress. Therefore, the PERK-ERO1⍺ complex is a key molecular machinery that allows quick metabolic adaptation to ER stress.


Asunto(s)
Mitocondrias , Oxidorreductasas , Oxidorreductasas/metabolismo , Mitocondrias/metabolismo , Estrés del Retículo Endoplásmico/fisiología , Retículo Endoplásmico/metabolismo , Estrés Oxidativo
6.
J Exp Biol ; 225(21)2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36268766

RESUMEN

For ectothermic species, adaptation to thermal changes is of critical importance. Mitochondrial oxidative phosphorylation (OXPHOS), which leverages multiple electron pathways to produce energy needed for survival, is among the crucial metabolic processes impacted by temperature. Our aim in this study was to identify how changes in temperature affect the less-studied electron transferring flavoprotein pathway, fed by fatty acid substrates. We used the planarian Dugesia tigrina, acclimated for 4 weeks at 10°C (cold acclimated) or 20°C (normothermic). Respirometry experiments were conducted at an assay temperature of either 10 or 20°C to study specific states of the OXPHOS process using the fatty acid substrates palmitoylcarnitine (long chain), octanoylcarnitine (medium chain) or acetylcarnitine (short chain). Following cold acclimation, octanoylcarnitine exhibited increases in both the OXPHOS and electron transfer (ET, non-coupled) states, indicating that the pathway involved in medium-chain length fatty acids adjusts to cold temperatures. Acetylcarnitine only showed an increase in the OXPHOS state as a result of cold acclimation, but not in the ET state, indicative of a change in phosphorylation system capacity rather than fatty acid ß-oxidation. Palmitoylcarnitine oxidation was unaffected. Our results show that cold acclimation in D. tigrina caused a specific adjustment in the capacity to metabolize medium-chain fatty acids rather than an adjustment in the activity of the enzymes carnitine-acylcarnitine translocase, carnitine acyltransferase and carnitine palmitoyltransferase-2. Here, we provide novel evidence of the alterations in fatty acid ß-oxidation during cold acclimation in D. tigrina.


Asunto(s)
Frío , Palmitoilcarnitina , Palmitoilcarnitina/metabolismo , Acetilcarnitina/metabolismo , Mitocondrias/metabolismo , Ácidos Grasos/metabolismo , Oxidación-Reducción
7.
Metabolites ; 12(4)2022 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-35448547

RESUMEN

Temperature shifts are a major challenge to animals; they drive adaptations in organisms and species, and affect all physiological functions in ectothermic organisms. Understanding the origin and mechanisms of these adaptations is critical for determining whether ectothermic organisms will be able to survive when faced with global climate change. Mitochondrial oxidative phosphorylation is thought to be an important metabolic player in this regard, since the capacity of the mitochondria to produce energy greatly varies according to temperature. However, organism survival and fitness depend not only on how much energy is produced, but, more precisely, on how oxidative phosphorylation is affected and which step of the process dictates thermal sensitivity. These questions need to be addressed from a new perspective involving a complex view of mitochondrial oxidative phosphorylation and its related pathways. In this review, we examine the effect of temperature on the commonly measured pathways, but mainly focus on the potential impact of lesser-studied pathways and related steps, including the electron-transferring flavoprotein pathway, glycerophosphate dehydrogenase, dihydroorotate dehydrogenase, choline dehydrogenase, proline dehydrogenase, and sulfide:quinone oxidoreductase. Our objective is to reveal new avenues of research that can address the impact of temperature on oxidative phosphorylation in all its complexity to better portray the limitations and the potential adaptations of aerobic metabolism.

8.
Med Sci Sports Exerc ; 54(8): 1300-1308, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35320143

RESUMEN

INTRODUCTION: The impact of eccentric exercise on mitochondrial function has only been poorly investigated and remains unclear. This study aimed to identify the changes in skeletal muscle mitochondrial respiration, specifically triggered by a single bout of eccentric treadmill exercise. METHODS: Male adult mice were randomly divided into eccentric (ECC; downhill running), concentric (CON; uphill running), and unexercised control groups ( n = 5/group). Running groups performed 18 bouts of 5 min at 20 cm·s -1 on an inclined treadmill (±15° to 20°). Mice were sacrificed 48 h after exercise for blood and quadriceps muscles collection. Deep proximal (red) and superficial distal (white) muscle portions were used for high-resolution respirometric measurements. RESULTS: Plasma creatine kinase activity was significantly higher in the ECC compared with CON group, reflecting exercise-induced muscle damage ( P < 0.01). The ECC exercise induced a significant decrease in oxidative phosphorylation capacity in both quadriceps femoris parts ( P = 0.032 in proximal portion, P = 0.010 in distal portion) in comparison with the CON group. This observation was only made for the nicotinamide adenine dinucleotide (NADH) pathway using pyruvate + malate as substrates. When expressed as a flux control ratio, indicating a change related to mitochondrial quality rather than quantity, this change seemed more prominent in distal compared with proximal portion of quadriceps muscle. No significant difference between groups was found for the NADH pathway with glutamate or glutamate + malate as substrates, for the succinate pathway or for fatty acid oxidation. CONCLUSIONS: Our data suggest that ECC exercise specifically affects pyruvate mitochondrial transport and/or oxidation 48 h after exercise, and this alteration mainly concerns the distal white muscle portion. This study provides new perspectives to improve our understanding of the mitochondrial adaptation associated with ECC exercise.


Asunto(s)
Malatos , NAD , Animales , Glutamatos/metabolismo , Malatos/metabolismo , Masculino , Ratones , Mitocondrias , Músculo Esquelético/metabolismo , NAD/metabolismo , Piruvatos/metabolismo
9.
Life (Basel) ; 11(7)2021 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-34357091

RESUMEN

Equine atypical myopathy is a seasonal intoxication of grazing equids. In Europe, this poisoning is associated with the ingestion of toxins contained in the seeds and seedlings of the sycamore maple (Acer pseudoplatanus). The toxins involved in atypical myopathy are known to inhibit ß-oxidation of fatty acids and induce a general decrease in mitochondrial respiration, as determined by high-resolution respirometry applied to muscle samples taken from cases of atypical myopathy. The severe impairment of mitochondrial bioenergetics induced by the toxins may explain the high rate of mortality observed: about 74% of horses with atypical myopathy die, most within the first two days of signs of poisoning. The mechanism of toxicity is not completely elucidated yet. To improve our understanding of the pathological process and to assess therapeutic candidates, we designed in vitro assays using equine skeletal myoblasts cultured from muscle biopsies and subjected to toxins involved in atypical myopathy. We established that equine primary myoblasts do respond to one of the toxins incriminated in the disease.

10.
FASEB J ; 35(2): e21338, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33428278

RESUMEN

Pregnancy complications associated with prenatal hypoxia lead to increased placental oxidative stress. Previous studies suggest that prenatal hypoxia can reduce mitochondrial respiratory capacity and mitochondrial fusion, which could lead to placental dysfunction and impaired fetal development. We developed a placenta-targeted treatment strategy using a mitochondrial antioxidant, MitoQ, encapsulated into nanoparticles (nMitoQ) to reduce placental oxidative stress and (indirectly) improve fetal outcomes. We hypothesized that, in a rat model of prenatal hypoxia, nMitoQ improves placental mitochondrial function and promotes mitochondrial fusion in both male and female placentae. Pregnant rats were treated with saline or nMitoQ on gestational day (GD) 15 and exposed to normoxia (21% O2 ) or hypoxia (11% O2 ) from GD15-21. On GD21, male and female placental labyrinth zones were collected for mitochondrial respirometry assessments, mitochondrial content, and markers of mitochondrial biogenesis, fusion and fission. Prenatal hypoxia reduced complex IV activity and fusion in male placentae, while nMitoQ improved complex IV activity in hypoxic male placentae. In female placentae, prenatal hypoxia decreased respiration through the S-pathway (complex II) and increased N-pathway (complex I) respiration, while nMitoQ increased fusion in hypoxic female placentae. No changes in mitochondrial content, biogenesis or fission were found. In conclusion, nMitoQ improved placental mitochondrial function in male and female placentae from fetuses exposed to prenatal hypoxia, which may contribute to improved placental function. However, the mechanisms (ie, changes in mitochondrial respiratory capacity and mitochondrial fusion) were distinct between the sexes. Treatment strategies targeted against placental oxidative stress could improve placental mitochondrial function in complicated pregnancies.


Asunto(s)
Antioxidantes/uso terapéutico , Hipoxia Fetal/tratamiento farmacológico , Mitocondrias/efectos de los fármacos , Nanopartículas/química , Compuestos Organofosforados/uso terapéutico , Placenta/efectos de los fármacos , Ubiquinona/análogos & derivados , Animales , Antioxidantes/administración & dosificación , Antioxidantes/farmacología , Respiración de la Célula , Femenino , Masculino , Mitocondrias/metabolismo , Dinámicas Mitocondriales , Compuestos Organofosforados/administración & dosificación , Compuestos Organofosforados/farmacología , Placenta/metabolismo , Embarazo , Ratas , Ratas Sprague-Dawley , Factores Sexuales , Ubiquinona/administración & dosificación , Ubiquinona/farmacología , Ubiquinona/uso terapéutico
11.
Mitochondrion ; 56: 102-110, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33271347

RESUMEN

Mitochondrial dysfunction is a major cause and/or contributor to the development and progression of vision defects in many ophthalmologic and mitochondrial diseases. Despite their mechanistic commonality, these diseases exhibit an impressive variety in sex- and tissue-specific penetrance, incidence, and severity. Currently, there is no functional explanation for these differences. We measured the function, relative capacities, and patterns of control of various oxidative phosphorylation pathways in the retina, the eyecup, the extraocular muscles, the optic nerve, and the sciatic nerve of adult male and female rats. We show that the control of mitochondrial respiratory pathways in the visual system is sex- and tissue-specific and that this may be an important factor in determining susceptibility to mitochondrial dysfunction between these groups. The optic nerve showed a low relative capacity of the NADH pathway, depending on complex I, compared to other tissues relying mainly on mitochondria for energy production. Furthermore, NADH pathway capacity is higher in females compared to males, and this sexual dimorphism occurs only in the optic nerve. Our results propose an explanation for Leber's hereditary optic neuropathy, a mitochondrial disease more prevalent in males where the principal tissue affected is the optic nerve. To our knowledge, this is the first study to identify and provide functional explanations for differences in the occurrence and severity of visual defects between tissues and between sexes. Our results highlight the importance of considering sex- and tissue-specific mitochondrial function in elucidating pathophysiological mechanisms of visual defects.


Asunto(s)
Músculos Oculomotores/metabolismo , Atrofia Óptica Hereditaria de Leber/metabolismo , Nervio Óptico/metabolismo , Fosforilación Oxidativa , Retina/metabolismo , Nervio Ciático/metabolismo , Animales , Femenino , Regulación de la Expresión Génica , Humanos , Masculino , Proteínas Mitocondriales/metabolismo , Especificidad de Órganos , Ratas , Caracteres Sexuales
12.
J Gerontol A Biol Sci Med Sci ; 76(5): 796-804, 2021 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-33257932

RESUMEN

The role played by mitochondrial function in the aging process has been a subject of intense debate in the past few decades, as part of the efforts to understand the mechanistic basis of longevity. The mitochondrial oxidative stress theory of aging suggests that a progressive decay of this organelle's function leads to an exacerbation of oxidative stress, with a deleterious impact on mitochondrial structure and DNA, ultimately promoting aging. Among the traits suspected to be associated with longevity is the variation in the regulation of oxidative phosphorylation, potentially affecting the management of oxidative stress. Longitudinal studies using the framework of metabolic control analysis have shown age-related differences in the flux control of respiration, but this approach has seldom been taken on a comparative scale. Using 4 species of marine bivalves exhibiting a large range of maximum life span (from 28 years to 507 years), we report life-span-related differences in flux control at different steps of the electron transfer system. Increased longevity was characterized by a lower control by NADH (complex I-linked) and Succinate (complex II-linked) pathways, while respiration was strongly controlled by complex IV when compared to shorter-lived species. Complex III exerted strong control over respiration in all species. Furthermore, high longevity was associated with higher citrate synthase activity and lower ATP synthase activity. Relieving the control exerted by the electron entry pathways could be advantageous for reaching higher longevity, leading to increased control by complex IV, the final electron acceptor in the electron transfer system.


Asunto(s)
Bivalvos/metabolismo , Longevidad/genética , Mitocondrias/metabolismo , Animales , Bivalvos/genética , Bivalvos/crecimiento & desarrollo , Respiración de la Célula/fisiología , Transporte de Electrón/fisiología , Complejo IV de Transporte de Electrones/fisiología , NAD/metabolismo , Estrés Oxidativo/fisiología , Ácido Succínico/metabolismo
13.
Mol Oncol ; 14(12): 3100-3120, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33031638

RESUMEN

Early stage localized prostate cancer (PCa) has an excellent prognosis; however, patient survival drops dramatically when PCa metastasizes. The molecular mechanisms underlying PCa metastasis are complex and remain unclear. Here, we examine the role of a new member of the fatty acid-binding protein (FABP) family, FABP12, in PCa progression. FABP12 is preferentially amplified and/or overexpressed in metastatic compared to primary tumors from both PCa patients and xenograft animal models. We show that FABP12 concurrently triggers metastatic phenotypes (induced epithelial-to-mesenchymal transition (EMT) leading to increased cell motility and invasion) and lipid bioenergetics (increased fatty acid uptake and accumulation, increased ATP production from fatty acid ß-oxidation) in PCa cells, supporting increased reliance on fatty acids for energy production. Mechanistically, we show that FABP12 is a driver of PPARγ activation which, in turn, regulates FABP12's role in lipid metabolism and PCa progression. Our results point to a novel role for a FABP-PPAR pathway in promoting PCa metastasis through induction of EMT and lipid bioenergetics.


Asunto(s)
Transformación Celular Neoplásica/patología , Metabolismo Energético , Transición Epitelial-Mesenquimal , Proteínas de Unión a Ácidos Grasos/metabolismo , Lípidos/química , PPAR gamma/metabolismo , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Línea Celular Tumoral , Movimiento Celular/genética , Progresión de la Enfermedad , Proteínas de Unión a Ácidos Grasos/genética , Dosificación de Gen , Humanos , Masculino , Invasividad Neoplásica , Metástasis de la Neoplasia , Transducción de Señal , Ensayos Antitumor por Modelo de Xenoinjerto
14.
PLoS One ; 15(2): e0228710, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32084168

RESUMEN

Our study revisits the role of cardiac mitochondrial adjustments during the progression of type 2 diabetes mellitus (T2DM), while considering age and sex as potential confounding factors. We used the Nile Grass rats (NRs) as the animal model. After weaning, animals were fed either a Standard Rodent Chow Diet (SRCD group) or a Mazuri Chinchilla Diet (MCD group) consisting of high-fiber and low-fat content. Both males and females in the SRCD group, exhibited increased body mass, body mass index, and plasma insulin compared to the MCD group animals. However, the females were able to preserve their fasting blood glucose throughout the age range on both diets, while the males showed significant hyperglycemia starting at 6 months in the SRCD group. In the males, a higher citrate synthase activity-a marker of mitochondrial content-was measured at 2 months in the SRCD compared to the MCD group, and this was followed by a decline with age in the SRCD group only. In contrast, females preserved their mitochondrial content throughout the age range. In the males exclusively, the complex IV capacity expressed independently of mitochondrial content varied with age in a diet-specific pattern; the capacity was elevated at 2 months in the SRCD group, and at 6 months in the MCD group. In addition, females, but not males, were able to adjust their capacity to oxidize long-chain fatty acid in accordance with the fat content of the diet. Our results show clear sexual dimorphism in the variation of mitochondrial content and oxidative phosphorylation capacity with diet and age. The SRCD not only leads to T2DM but also exacerbates age-related cardiac mitochondrial defects. These observations, specific to male NRs, might reflect deleterious dietary-induced changes on their metabolism making them more prone to the cardiovascular consequences of aging and T2DM.


Asunto(s)
Envejecimiento/patología , Diabetes Mellitus Tipo 2/patología , Mitocondrias Cardíacas/patología , Caracteres Sexuales , Animales , Glucemia/metabolismo , Citrato (si)-Sintasa/metabolismo , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/fisiopatología , Dieta , Complejo IV de Transporte de Electrones/metabolismo , Ayuno/sangre , Ácidos Grasos/química , Ácidos Grasos/metabolismo , Femenino , Masculino , Mitocondrias Cardíacas/metabolismo , Murinae , NAD/metabolismo , Oxidación-Reducción , Fenotipo
15.
Cells ; 9(1)2020 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-31936632

RESUMEN

Nor1, the third member of the Nr4a subfamily of nuclear receptor, is garnering increased interest in view of its role in the regulation of glucose homeostasis. Our previous study highlighted a proapoptotic role of Nor1 in pancreatic beta cells and showed that Nor1 expression was increased in islets isolated from type 2 diabetic individuals, suggesting that Nor1 could mediate the deterioration of islet function in type 2 diabetes. However, the mechanism remains incompletely understood. We herein investigated the subcellular localization of Nor1 in INS832/13 cells and dispersed human beta cells. We also examined the consequences of Nor1 overexpression on mitochondrial function and morphology. Our results show that, surprisingly, Nor1 is mostly cytoplasmic in beta cells and undergoes mitochondrial translocation upon activation by proinflammatory cytokines. Mitochondrial localization of Nor1 reduced glucose oxidation, lowered ATP production rates, and inhibited glucose-stimulated insulin secretion. Western blot and microscopy images revealed that Nor1 could provoke mitochondrial fragmentation via mitophagy. Our study unveils a new mode of action for Nor1, which affects beta-cell viability and function by disrupting mitochondrial networks.


Asunto(s)
Células Secretoras de Insulina/metabolismo , Mitocondrias/metabolismo , Miembro 3 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , Línea Celular , Citocinas/metabolismo , Humanos , Mediadores de Inflamación/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/ultraestructura , Mitocondrias/ultraestructura , Mitofagia , Oxidación-Reducción
16.
Sci Rep ; 10(1): 355, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31942016

RESUMEN

Breast cancer patients are commonly treated with taxane (e.g. docetaxel) chemotherapy, despite poor outcomes and eventual disease relapse. We previously identified the Bcl-2-associated death promoter (BAD) as a prognostic indicator of good outcome in taxane-treated breast cancer patients. We also demonstrated that BAD expression in human breast carcinoma cells generated larger tumors in mouse xenograft models. These paradoxical results suggest that BAD-expressing tumors are differentially sensitive to taxane treatment. We validated this here and show that docetaxel therapy preferentially reduced growth of BAD-expressing xenograft tumors. We next explored the cellular mechanism whereby BAD sensitizes cells to docetaxel. Taxanes are microtubule inhibiting agents that cause cell cycle arrest in mitosis whereupon the cells either die in mitosis or aberrantly exit (mitotic slippage) and survive as polyploid cells. In response to docetaxel, BAD-expressing cells had lengthened mitotic arrest with a higher proportion of cells undergoing death in mitosis with decreased mitotic slippage. Death in mitosis was non-apoptotic and not dependent on Bcl-XL interaction or caspase activation. Instead, cell death was necroptotic, and dependent on ROS. These results suggest that BAD is prognostic for favourable outcome in response to taxane chemotherapy by enhancing necroptotic cell death and inhibiting the production of potentially chemoresistant polyploid cells.


Asunto(s)
Antineoplásicos/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Docetaxel/uso terapéutico , Genes bcl-2 , Proteína Letal Asociada a bcl/genética , Animales , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/patología , Línea Celular Tumoral , Humanos , Ratones , Mitosis/efectos de los fármacos , Necroptosis/efectos de los fármacos , Fosforilación Oxidativa , Pronóstico , Regiones Promotoras Genéticas , Especies Reactivas de Oxígeno/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
17.
Acta Physiol (Oxf) ; 228(3): e13430, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31840389

RESUMEN

Obesity-induced insulin resistance and type 2 diabetes mellitus can ultimately result in various complications, including diabetic cardiomyopathy. In this case, cardiac dysfunction is characterized by metabolic disturbances such as impaired glucose oxidation and an increased reliance on fatty acid (FA) oxidation. Mitochondrial dysfunction has often been associated with the altered metabolic function in the diabetic heart, and may result from FA-induced lipotoxicity and uncoupling of oxidative phosphorylation. In this review, we address the metabolic changes in the diabetic heart, focusing on the loss of metabolic flexibility and cardiac mitochondrial function. We consider the alterations observed in mitochondrial substrate utilization, bioenergetics and dynamics, and highlight new areas of research which may improve our understanding of the cause and effect of cardiac mitochondrial dysfunction in diabetes. Finally, we explore how lifestyle (nutrition and exercise) and pharmacological interventions can prevent and treat metabolic and mitochondrial dysfunction in diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Cardiomiopatías Diabéticas/metabolismo , Resistencia a la Insulina , Animales , Diabetes Mellitus Tipo 2/patología , Cardiomiopatías Diabéticas/etiología , Cardiomiopatías Diabéticas/patología , Ácidos Grasos/metabolismo , Humanos , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/patología
18.
Cardiovasc Res ; 116(1): 183-192, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30715197

RESUMEN

AIMS: Perinatal iron deficiency (ID) alters developmental trajectories of offspring, predisposing them to cardiovascular dysfunction in later life. The mechanisms underlying this long-term programming of renal function have not been defined. We hypothesized perinatal ID causes hypertension and alters kidney metabolic function and morphology in a sex-dependent manner in adult offspring. Furthermore, we hypothesized these effects are exacerbated by chronic consumption of a high salt diet. METHODS AND RESULTS: Pregnant Sprague Dawley rats were fed either an iron-restricted or replete diet prior to and throughout pregnancy. Adult offspring were fed normal or high salt diets for 6 weeks prior to experimentation at 6 months of age. Blood pressure (BP) was assessed via indwelling catheters in anaesthetized offspring; kidney mitochondrial function was assessed via high-resolution respirometry; reactive oxygen species and nitric oxide were quantified via fluorescence microscopy. Adult males, but not females, exhibited increased systolic BP due to ID (P = 0.01) and high salt intake (P = 0.02). In males, but not in females, medullary mitochondrial content was increased by high salt (P = 0.003), while succinate-dependent respiration was reduced by ID (P < 0.05). The combination of perinatal ID and high salt reduced complex IV activity in the cortex of males (P = 0.01). Perinatal ID increased cytosolic superoxide generation (P < 0.001) concomitant with reduced nitric oxide bioavailability (P < 0.001) in male offspring, while high salt increased mitochondrial superoxide in the medulla (P = 0.04) and cytosolic superoxide within the cortex (P = 0.01). Male offspring exhibited glomerular basement membrane thickening (P < 0.05), increased collagen deposition (P < 0.05), and glomerular hypertrophy (interaction, P = 0.02) due to both perinatal ID and high salt. Female offspring exhibited no alterations in mitochondrial function or morphology due to either high salt or ID. CONCLUSION: Perinatal ID causes long-term sex-dependent alterations in renal metabolic function and morphology, potentially contributing to hypertension and increased cardiovascular disease risk.


Asunto(s)
Deficiencias de Hierro , Hierro de la Dieta , Enfermedades Renales/etiología , Riñón/metabolismo , Mitocondrias/metabolismo , Estrés Oxidativo , Efectos Tardíos de la Exposición Prenatal , Sodio en la Dieta , Factores de Edad , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Presión Sanguínea , Modelos Animales de Enfermedad , Complejo IV de Transporte de Electrones/metabolismo , Femenino , Riñón/patología , Riñón/fisiopatología , Enfermedades Renales/metabolismo , Enfermedades Renales/patología , Enfermedades Renales/fisiopatología , Masculino , Fenómenos Fisiologicos Nutricionales Maternos , Mitocondrias/patología , Óxido Nítrico/metabolismo , Estado Nutricional , Embarazo , Ratas Sprague-Dawley , Factores Sexuales , Superóxidos/metabolismo , Factores de Tiempo
19.
J Exp Biol ; 222(Pt 18)2019 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-31439652

RESUMEN

As the world's climate changes, life faces an evolving thermal environment. Mitochondrial oxidative phosphorylation (OXPHOS) is critical to ensure sufficient cellular energy production, and it is strongly influenced by temperature. The thermally induced changes to the regulation of specific steps within the OXPHOS process are poorly understood. In our study, we used the eurythermal species of planarian Dugesia tigrina to study the thermal sensitivity of the OXPHOS process at 10, 15, 20, 25 and 30°C. We conducted cold acclimation experiments where we measured the adjustment of specific steps in OXPHOS at two assay temperatures (10 and 20°C) following 4 weeks of acclimation under normal (22°C) or low (5°C) temperature conditions. At the low temperature, the contribution of the NADH pathway to the maximal OXPHOS capacity, in a combined pathway (NADH and succinate), was reduced. There was partial compensation by an increased contribution of the succinate pathway. As the temperature decreased, OXPHOS became more limited by the capacity of the phosphorylation system. Acclimation to the low temperature resulted in positive adjustments of the NADH pathway capacity due, at least in part, to an increase in complex I activity. The acclimation also resulted in a better match between OXPHOS and phosphorylation system capacities. Both of these adjustments following acclimation were specific to the low assay temperature. We conclude that there is substantial plasticity in the mitochondrial OXPHOS process following thermal acclimation in D. tigrina, and this probably contributes to the wide thermal range of the species.


Asunto(s)
Mitocondrias/metabolismo , Planarias/fisiología , Temperatura , Aclimatación/fisiología , Adaptación Fisiológica , Animales , Complejo I de Transporte de Electrón/metabolismo , NAD/metabolismo , Fosforilación Oxidativa
20.
Oncogene ; 38(18): 3325-3339, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30635657

RESUMEN

The Bcl-2-associated death promoter BAD is a prognostic indicator for good clinical outcome of breast cancer patients; however, whether BAD affects breast cancer biology is unknown. Here we showed that BAD increased cell growth in breast cancer cells through two distinct mechanisms. Phosphorylation of BAD at S118 increased S99 phosphorylation, 14-3-3 binding and AKT activation to promote growth and survival. Through a second, more prominent pathway, BAD stimulated mitochondrial oxygen consumption in a novel manner that was downstream of substrate entry into the mitochondria. BAD stimulated complex I activity that facilitated enhanced cell growth and sensitized cells to apoptosis in response to complex I blockade. We propose that this dependence on oxidative metabolism generated large but nonaggressive cancers. This model identifies a non-canonical role for BAD and reconciles BAD-mediated tumor growth with favorable outcomes in BAD-high breast cancer patients.


Asunto(s)
Proteínas 14-3-3/metabolismo , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Proliferación Celular/fisiología , Mitocondrias/metabolismo , Proteína Letal Asociada a bcl/metabolismo , Animales , Apoptosis/fisiología , Línea Celular Tumoral , Femenino , Humanos , Ratones , Mitocondrias/patología , Consumo de Oxígeno/fisiología , Fosforilación/fisiología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Transducción de Señal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...