Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Med Chem ; 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38780468

RESUMEN

Vaccinia-related kinase 1 (VRK1) and the δ and ε isoforms of casein kinase 1 (CK1) are linked to various disease-relevant pathways. However, the lack of tool compounds for these kinases has significantly hampered our understanding of their cellular functions and therapeutic potential. Here, we describe the structure-based development of potent inhibitors of VRK1, a kinase highly expressed in various tumor types and crucial for cell proliferation and genome integrity. Kinome-wide profiling revealed that our compounds also inhibit CK1δ and CK1ε. We demonstrate that dihydropteridinones 35 and 36 mimic the cellular outcomes of VRK1 depletion. Complementary studies with existing CK1δ and CK1ε inhibitors suggest that these kinases may play overlapping roles in cell proliferation and genome instability. Together, our findings highlight the potential of VRK1 inhibition in treating p53-deficient tumors and possibly enhancing the efficacy of existing cancer therapies that target DNA stability or cell division.

2.
Nucleic Acids Res ; 50(11): 6235-6250, 2022 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-35670662

RESUMEN

The integrity and proper expression of genomes are safeguarded by DNA and RNA surveillance pathways. While many RNA surveillance factors have additional functions in the nucleus, little is known about the incidence and physiological impact of converging RNA and DNA signals. Here, using genetic screens and genome-wide analyses, we identified unforeseen SMG-1-dependent crosstalk between RNA surveillance and DNA repair in living animals. Defects in RNA processing, due to viable THO complex or PNN-1 mutations, induce a shift in DNA repair in dividing and non-dividing tissues. Loss of SMG-1, an ATM/ATR-like kinase central to RNA surveillance by nonsense-mediated decay (NMD), restores DNA repair and radio-resistance in THO-deficient animals. Mechanistically, we find SMG-1 and its downstream target SMG-2/UPF1, but not NMD per se, to suppress DNA repair by non-homologous end-joining in favour of single strand annealing. We postulate that moonlighting proteins create short-circuits in vivo, allowing aberrant RNA to redirect DNA repair.


Asunto(s)
Reparación del ADN por Unión de Extremidades , Degradación de ARNm Mediada por Codón sin Sentido , Proteínas Serina-Treonina Quinasas , ARN , Animales , ADN/genética , Estudio de Asociación del Genoma Completo , Proteínas Serina-Treonina Quinasas/metabolismo , ARN/genética , ARN Helicasas/genética
3.
Genetics ; 195(3): 1187-91, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23979586

RESUMEN

The generation of genetic mutants in Caenorhabditis elegans has long relied on the selection of mutations in large-scale screens. Directed mutagenesis of specific loci in the genome would greatly speed up analysis of gene function. Here, we adapt the CRISPR/Cas9 system to generate mutations at specific sites in the C. elegans genome.


Asunto(s)
Sistemas CRISPR-Cas , Caenorhabditis elegans/genética , Mutagénesis Sitio-Dirigida , Animales , Animales Modificados Genéticamente , Secuencia de Bases , ADN de Helmintos/genética , Marcación de Gen , Genoma de los Helmintos , Datos de Secuencia Molecular
4.
PLoS Genet ; 9(3): e1003339, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23505385

RESUMEN

Malignant brain tumour (MBT) domain proteins are transcriptional repressors that function within Polycomb complexes. Some MBT genes are tumour suppressors, but how they prevent tumourigenesis is unknown. The Caenorhabditis elegans MBT protein LIN-61 is a member of the synMuvB chromatin-remodelling proteins that control vulval development. Here we report a new role for LIN-61: it protects the genome by promoting homologous recombination (HR) for the repair of DNA double-strand breaks (DSBs). lin-61 mutants manifest numerous problems associated with defective HR in germ and somatic cells but remain proficient in meiotic recombination. They are hypersensitive to ionizing radiation and interstrand crosslinks but not UV light. Using a novel reporter system that monitors repair of a defined DSB in C. elegans somatic cells, we show that LIN-61 contributes to HR. The involvement of this MBT protein in HR raises the possibility that MBT-deficient tumours may also have defective DSB repair.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Transformación Celular Neoplásica , Proteínas Cromosómicas no Histona , Reparación del ADN , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/efectos de la radiación , Ensamble y Desensamble de Cromatina , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Roturas del ADN de Doble Cadena/efectos de la radiación , Reparación del ADN/genética , Reparación del ADN/efectos de la radiación , Inestabilidad Genómica/genética , Células Germinativas/metabolismo , Recombinación Homóloga/genética , Recombinación Homóloga/efectos de la radiación , Humanos , Mutación , Tolerancia a Radiación/genética , Radiación Ionizante , Rayos Ultravioleta
5.
PLoS Genet ; 9(2): e1003276, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23408909

RESUMEN

Successful completion of meiosis requires the induction and faithful repair of DNA double-strand breaks (DSBs). DSBs can be repaired via homologous recombination (HR) or non-homologous end joining (NHEJ), yet only repair via HR can generate the interhomolog crossovers (COs) needed for meiotic chromosome segregation. Here we identify COM-1, the homolog of CtIP/Sae2/Ctp1, as a crucial regulator of DSB repair pathway choice during Caenorhabditis elegans gametogenesis. COM-1-deficient germ cells repair meiotic DSBs via the error-prone pathway NHEJ, resulting in a lack of COs, extensive chromosomal aggregation, and near-complete embryonic lethality. In contrast to its yeast counterparts, COM-1 is not required for Spo11 removal and initiation of meiotic DSB repair, but instead promotes meiotic recombination by counteracting the NHEJ complex Ku. In fact, animals defective for both COM-1 and Ku are viable and proficient in CO formation. Further genetic dissection revealed that COM-1 acts parallel to the nuclease EXO-1 to promote interhomolog HR at early pachytene stage of meiotic prophase and thereby safeguards timely CO formation. Both of these nucleases, however, are dispensable for RAD-51 recruitment at late pachytene stage, when homolog-independent repair pathways predominate, suggesting further redundancy and/or temporal regulation of DNA end resection during meiotic prophase. Collectively, our results uncover the potentially lethal properties of NHEJ during meiosis and identify a critical role for COM-1 in NHEJ inhibition and CO assurance in germ cells.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Proteínas de Ciclo Celular/genética , Recombinación Homóloga/genética , Meiosis/genética , Animales , Antígenos Nucleares/genética , Antígenos Nucleares/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Segregación Cromosómica/genética , Intercambio Genético , Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Endodesoxirribonucleasas/genética , Endodesoxirribonucleasas/metabolismo , Células Germinativas/metabolismo , Autoantígeno Ku , Fase Paquiteno/genética
6.
Chromosoma ; 120(1): 1-21, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21052706

RESUMEN

Faithful repair of DNA double-strand breaks (DSBs) is vital for animal development, as inappropriate repair can cause gross chromosomal alterations that result in cellular dysfunction, ultimately leading to cancer, or cell death. Correct processing of DSBs is not only essential for maintaining genomic integrity, but is also required in developmental programs, such as gametogenesis, in which DSBs are deliberately generated. Accordingly, DSB repair deficiencies are associated with various developmental disorders including cancer predisposition and infertility. To avoid this threat, cells are equipped with an elaborate and evolutionarily well-conserved network of DSB repair pathways. In recent years, Caenorhabditis elegans has become a successful model system in which to study DSB repair, leading to important insights in this process during animal development. This review will discuss the major contributions and recent progress in the C. elegans field to elucidate the complex networks involved in DSB repair, the impact of which extends well beyond the nematode phylum.


Asunto(s)
Caenorhabditis elegans/metabolismo , Roturas del ADN de Doble Cadena , Reparación del ADN , ADN de Cadena Simple/metabolismo , Evolución Molecular , Animales , Caenorhabditis elegans/genética , Ciclo Celular , Deleción Cromosómica , ADN de Cadena Simple/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA