Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Neuromuscul Disord ; 34: 114-122, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38183850

RESUMEN

The 270th ENMC workshop aimed to develop a common procedure to optimize the reliability of SMN2 gene copy number determination and to reinforce collaborative networks between molecular scientists and clinicians. The workshop involved neuromuscular and clinical experts and representatives of patient advocacy groups and industry. SMN2 copy number is currently one of the main determinants for therapeutic decision in SMA patients: participants discussed the issues that laboratories may encounter in this molecular test and the cruciality of the accurate determination, due the implications as prognostic factor in symptomatic patients and in individuals identified through newborn screening programmes. At the end of the workshop, the attendees defined a set of recommendations divided into four topics: SMA molecular prognosis assessment, newborn screening for SMA, SMN2 copies and treatments, and modifiers and biomarkers. Moreover, the group draw up a series of recommendations for the companies manufacturing laboratory kits, that will help to minimize the risk of errors, regardless of the laboratories' expertise.


Asunto(s)
Atrofia Muscular Espinal , Proteína 2 para la Supervivencia de la Neurona Motora , Humanos , Biomarcadores/análisis , Conferencias de Consenso como Asunto , Dosificación de Gen , Atrofia Muscular Espinal/diagnóstico , Atrofia Muscular Espinal/genética , Pronóstico , Proteína 2 para la Supervivencia de la Neurona Motora/genética
4.
Front Genet ; 13: 782685, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35401678

RESUMEN

Spinocerebellar ataxia (SCA) is a heterogeneous group of neurodegenerative disorders with autosomal dominant inheritance. Genetic testing for SCA leads to diagnosis, prognosis and risk assessment for patients and their family members. While advances in sequencing and computing technologies have provided researchers with a rapid expansion in the genetic test content that can be used to unravel the genetic causes that underlie diseases, the large number of variants with unknown significance (VUSes) detected represent challenges. To minimize the proportion of VUSes, follow-up studies are needed to aid in their reclassification as either (likely) pathogenic or (likely) benign variants. In this study, we addressed the challenge of prioritizing VUSes for follow-up using (a combination of) variant segregation studies, 3D protein modeling, in vitro splicing assays and functional assays. Of the 39 VUSes prioritized for further analysis, 13 were eligible for follow up. We were able to reclassify 4 of these VUSes to LP, increasing the molecular diagnostic yield by 1.1%. Reclassification of VUSes remains difficult due to limited possibilities for performing variant segregation studies in the classification process and the limited availability of routine functional tests.

5.
Int J Mol Sci ; 22(22)2021 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-34830104

RESUMEN

Epidermolysis bullosa is a group of genetic skin conditions characterized by abnormal skin (and mucosal) fragility caused by pathogenic variants in various genes. The disease severity ranges from early childhood mortality in the most severe types to occasional acral blistering in the mildest types. The subtype and severity of EB is linked to the gene involved and the specific variants in that gene, which also determine its mode of inheritance. Current treatment is mainly focused on symptomatic relief such as wound care and blister prevention, because truly curative treatment options are still at the preclinical stage. Given the current level of understanding, the broad spectrum of genes and variants underlying EB makes it impossible to develop a single treatment strategy for all patients. It is likely that many different variant-specific treatment strategies will be needed to ultimately treat all patients. Antisense-oligonucleotide (ASO)-mediated exon skipping aims to counteract pathogenic sequence variants by restoring the open reading frame through the removal of the mutant exon from the pre-messenger RNA. This should lead to the restored production of the protein absent in the affected skin and, consequently, improvement of the phenotype. Several preclinical studies have demonstrated that exon skipping can restore protein production in vitro, in skin equivalents, and in skin grafts derived from EB-patient skin cells, indicating that ASO-mediated exon skipping could be a viable strategy as a topical or systemic treatment. The potential value of exon skipping for EB is supported by a study showing reduced phenotypic severity in patients who carry variants that result in natural exon skipping. In this article, we review the substantial progress made on exon skipping for EB in the past 15 years and highlight the opportunities and current challenges of this RNA-based therapy approach. In addition, we present a prioritization strategy for the development of exon skipping based on genomic information of all EB-involved genes.


Asunto(s)
Epidermólisis Ampollosa , Exones , Fibroblastos/inmunología , Mutación , Oligonucleótidos Antisentido , Piel/inmunología , Epidermólisis Ampollosa/genética , Epidermólisis Ampollosa/inmunología , Epidermólisis Ampollosa/terapia , Humanos , Oligonucleótidos Antisentido/genética , Oligonucleótidos Antisentido/uso terapéutico
6.
EMBO Mol Med ; 13(5): e13258, 2021 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-33851776

RESUMEN

Vacuolar protein sorting 41 (VPS41) is as part of the Homotypic fusion and Protein Sorting (HOPS) complex required for lysosomal fusion events and, independent of HOPS, for regulated secretion. Here, we report three patients with compound heterozygous mutations in VPS41 (VPS41S285P and VPS41R662* ; VPS41c.1423-2A>G and VPS41R662* ) displaying neurodegeneration with ataxia and dystonia. Cellular consequences were investigated in patient fibroblasts and VPS41-depleted HeLa cells. All mutants prevented formation of a functional HOPS complex, causing delayed lysosomal delivery of endocytic and autophagic cargo. By contrast, VPS41S285P enabled regulated secretion. Strikingly, loss of VPS41 function caused a cytosolic redistribution of mTORC1, continuous nuclear localization of Transcription Factor E3 (TFE3), enhanced levels of LC3II, and a reduced autophagic response to nutrient starvation. Phosphorylation of mTORC1 substrates S6K1 and 4EBP1 was not affected. In a C. elegans model of Parkinson's disease, co-expression of VPS41S285P /VPS41R662* abolished the neuroprotective function of VPS41 against α-synuclein aggregates. We conclude that the VPS41 variants specifically abrogate HOPS function, which interferes with the TFEB/TFE3 axis of mTORC1 signaling, and cause a neurodegenerative disease.


Asunto(s)
Enfermedades Neurodegenerativas , Animales , Autofagia , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Caenorhabditis elegans/genética , Células HeLa , Humanos , Lisosomas/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Enfermedades Neurodegenerativas/genética , Transporte de Proteínas , Proteínas de Transporte Vesicular/metabolismo
7.
J Mol Diagn ; 23(6): 753-764, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33798739

RESUMEN

Spinal muscular atrophy is a severe autosomal recessive disease caused by disruptions in the SMN1 gene. The nearly identical SMN2 gene copy number is associated with disease severity. SMN1 duplication markers, such as c.∗3+80T>G and c.∗211_∗212del, can assess residual carrier risk. An SMN2 disease modifier (c.859G>C) can help inform prognostic outcomes. The emergence of multiple precision gene therapies for spinal muscular atrophy requires accurate and rapid detection of SMN1 and SMN2 copy numbers to enable early treatment and optimal patient outcomes. We developed and evaluated a single-tube PCR/capillary electrophoresis assay system that quantifies SMN1/2 copy numbers and genotypes three additional clinically relevant variants. Analytical validation was performed with human cell lines and whole blood representing varying SMN1/2 copies on four capillary electrophoresis instrument models. In addition, four independent laboratories used the assay to test 468 residual clinical genomic DNA samples. The results were ≥98.3% concordant with consensus SMN1/2 exon 7 copy numbers, determined using multiplex ligation-dependent probe amplification and droplet digital PCR, and were 100% concordant with Sanger sequencing for the three variants. Furthermore, copy number values were 98.6% (SMN1) and 97.1% (SMN2) concordant to each laboratory's own reference results.


Asunto(s)
Variaciones en el Número de Copia de ADN , Duplicación de Gen , Atrofia Muscular Espinal/diagnóstico , Atrofia Muscular Espinal/genética , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Humanos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Proteína 2 para la Supervivencia de la Neurona Motora/genética
8.
Nat Commun ; 11(1): 5797, 2020 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-33199684

RESUMEN

ARGONAUTE-2 and associated miRNAs form the RNA-induced silencing complex (RISC), which targets mRNAs for translational silencing and degradation as part of the RNA interference pathway. Despite the essential nature of this process for cellular function, there is little information on the role of RISC components in human development and organ function. We identify 13 heterozygous mutations in AGO2 in 21 patients affected by disturbances in neurological development. Each of the identified single amino acid mutations result in impaired shRNA-mediated silencing. We observe either impaired RISC formation or increased binding of AGO2 to mRNA targets as mutation specific functional consequences. The latter is supported by decreased phosphorylation of a C-terminal serine cluster involved in mRNA target release, increased formation of dendritic P-bodies in neurons and global transcriptome alterations in patient-derived primary fibroblasts. Our data emphasize the importance of gene expression regulation through the dynamic AGO2-RNA association for human neuronal development.


Asunto(s)
Proteínas Argonautas/genética , Células Germinativas/metabolismo , Mutación/genética , Sistema Nervioso/crecimiento & desarrollo , Sistema Nervioso/metabolismo , Interferencia de ARN , Adolescente , Animales , Proteínas Argonautas/química , Niño , Preescolar , Análisis por Conglomerados , Dendritas/metabolismo , Fibroblastos/metabolismo , Silenciador del Gen , Células HEK293 , Hipocampo/patología , Humanos , Ratones , Simulación de Dinámica Molecular , Neuronas/metabolismo , Fosforilación , Dominios Proteicos , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Interferente Pequeño/metabolismo , Complejo Silenciador Inducido por ARN/metabolismo , Ratas , Transcriptoma/genética
9.
Brain Commun ; 2(2): fcaa075, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32954327

RESUMEN

Clinical severity and treatment response vary significantly between patients with spinal muscular atrophy. The approval of therapies and the emergence of neonatal screening programmes urgently require a more detailed understanding of the genetic variants that underlie this clinical heterogeneity. We systematically investigated genetic variation other than SMN2 copy number in the SMN locus. Data were collected through our single-centre, population-based study on spinal muscular atrophy in the Netherlands, including 286 children and adults with spinal muscular atrophy Types 1-4, including 56 patients from 25 families with multiple siblings with spinal muscular atrophy. We combined multiplex ligation-dependent probe amplification, Sanger sequencing, multiplexed targeted resequencing and digital droplet polymerase chain reaction to determine sequence and expression variation in the SMN locus. SMN1, SMN2 and NAIP gene copy number were determined by multiplex ligation-dependent probe amplification. SMN2 gene variant analysis was performed using Sanger sequencing and RNA expression analysis of SMN by droplet digital polymerase chain reaction. We identified SMN1-SMN2 hybrid genes in 10% of spinal muscular atrophy patients, including partial gene deletions, duplications or conversions within SMN1 and SMN2 genes. This indicates that SMN2 copies can vary structurally between patients, implicating an important novel level of genetic variability in spinal muscular atrophy. Sequence analysis revealed six exonic and four intronic SMN2 variants, which were associated with disease severity in individual cases. There are no indications that NAIP1 gene copy number or sequence variants add value in addition to SMN2 copies in predicting the clinical phenotype in individual patients with spinal muscular atrophy. Importantly, 95% of spinal muscular atrophy siblings in our study had equal SMN2 copy numbers and structural changes (e.g. hybrid genes), but 60% presented with a different spinal muscular atrophy type, indicating the likely presence of further inter- and intragenic variabilities inside as well as outside the SMN locus. SMN2 gene copies can be structurally different, resulting in inter- and intra-individual differences in the composition of SMN1 and SMN2 gene copies. This adds another layer of complexity to the genetics that underlie spinal muscular atrophy and should be considered in current genetic diagnosis and counselling practices.

10.
Am J Med Genet A ; 182(9): 2037-2048, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32710489

RESUMEN

The SET domain containing 2, histone lysine methyltransferase encoded by SETD2 is a dual-function methyltransferase for histones and microtubules and plays an important role for transcriptional regulation, genomic stability, and cytoskeletal functions. Specifically, SETD2 is associated with trimethylation of histone H3 at lysine 36 (H3K36me3) and methylation of α-tubulin at lysine 40. Heterozygous loss of function and missense variants have previously been described with Luscan-Lumish syndrome (LLS), which is characterized by overgrowth, neurodevelopmental features, and absence of overt congenital anomalies. We have identified 15 individuals with de novo variants in codon 1740 of SETD2 whose features differ from those with LLS. Group 1 consists of 12 individuals with heterozygous variant c.5218C>T p.(Arg1740Trp) and Group 2 consists of 3 individuals with heterozygous variant c.5219G>A p.(Arg1740Gln). The phenotype of Group 1 includes microcephaly, profound intellectual disability, congenital anomalies affecting several organ systems, and similar facial features. Individuals in Group 2 had moderate to severe intellectual disability, low normal head circumference, and absence of additional major congenital anomalies. While LLS is likely due to loss of function of SETD2, the clinical features seen in individuals with variants affecting codon 1740 are more severe suggesting an alternative mechanism, such as gain of function, effects on epigenetic regulation, or posttranslational modification of the cytoskeleton. Our report is a prime example of different mutations in the same gene causing diverging phenotypes and the features observed in Group 1 suggest a new clinically recognizable syndrome uniquely associated with the heterozygous variant c.5218C>T p.(Arg1740Trp) in SETD2.


Asunto(s)
Predisposición Genética a la Enfermedad , N-Metiltransferasa de Histona-Lisina/genética , Discapacidad Intelectual/genética , Trastornos del Neurodesarrollo/genética , Tubulina (Proteína)/genética , Niño , Preescolar , Codón/genética , Epigénesis Genética/genética , Femenino , Estudios de Asociación Genética , Humanos , Lactante , Discapacidad Intelectual/patología , Mutación con Pérdida de Función/genética , Masculino , Mutación Missense , Malformaciones del Sistema Nervioso/genética , Malformaciones del Sistema Nervioso/patología , Trastornos del Neurodesarrollo/fisiopatología
11.
Contact Dermatitis ; 83(3): 196-205, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32333380

RESUMEN

BACKGROUND: Hyperkeratotic hand eczema (HHE) is a typical clinical hand eczema subtype with a largely unknown pathophysiology. OBJECTIVE: To investigate histopathology, expression of keratins (K), epidermal barrier proteins, and adhesion molecules in HHE. METHODS: Palmar skin biopsies (lesional and perilesional) were obtained from seven HHE patients and two healthy controls. Moreover, 135 candidate genes associated with palmoplantar keratoderma were screened for mutations. RESULTS: Immunofluorescence staining showed a significant reduction of K9 and K14 in lesional skin. Upregulation was found for K5, K6, K16, and K17 in lesional skin compared with perilesional and healthy palmar skin. Further, upregulation of involucrin and alternating loricrin staining, both in an extracellular staining pattern, was found. Filaggrin expression was similar in lesional, perilesional, and control skin. No monogenetic mutations were found. CONCLUSION: Currently, the phenotype of HHE is included in the hand eczema classification system; however, it can be argued whether this is justified. The evident expression of filaggrin and involucrin in lesional skin does not support a pathogenesis of atopic eczema. The upregulation of K6, K16, and K17 and reduction of K9 and K14 might contribute to the underlying pathogenesis. Unfortunately, comparison with hand eczema studies is not possible yet, because similar protein expression studies are lacking.


Asunto(s)
Dermatitis Atópica/metabolismo , Hiperqueratosis Epidermolítica/metabolismo , Queratinas/metabolismo , Adulto , Biomarcadores/metabolismo , Femenino , Proteínas Filagrina , Humanos , Inmunohistoquímica , Masculino , Regulación hacia Arriba
13.
Neurol Genet ; 6(1): e386, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32042914

RESUMEN

OBJECTIVE: To investigate mutations in genes that are potential modifiers of spinal muscular atrophy (SMA) severity. METHODS: We performed a hypothesis-based search into the presence of variants in fused in sarcoma (FUS), transactive response DNA-binding protein 43 (TDP-43), plastin 3 (PLS3), and profilin 2 (PFN2) in a cohort of 153 patients with SMA types 1-4, including 19 families. Variants were detected with targeted next-generation sequencing and confirmed with Sanger sequencing. Functional effects of the identified variants were analyzed in silico and for PLS3, by analyzing expression levels in peripheral blood. RESULTS: We identified 2 exonic variants in FUS exons 5 and 6 (p.R216C and p.S135N) in 2 unrelated patients, but clinical effects were not evident. We identified 8 intronic variants in PLS3 in 33 patients. Five PLS3 variants (c.1511+82T>C; c.748+130 G>A; c.367+182C>T; c.891-25T>C (rs145269469); c.1355+17A>G (rs150802596)) potentially alter exonic splice silencer or exonic splice enhancer sites. The variant c.367+182C>T, but not RNA expression levels, corresponded with a more severe phenotype in 1 family. However, this variant or level of PLS3 expression did not consistently correspond with a milder or more severe phenotype in other families or the overall cohort. We found 3 heterozygous, intronic variants in PFN2 and TDP-43 with no correlation with clinical phenotype or effects on splicing. CONCLUSIONS: PLS3 and FUS sequence variants do not modify SMA severity at the population level. Specific variants in individual patients or families do not consistently correlate with disease severity.

14.
Mol Ther Nucleic Acids ; 18: 465-475, 2019 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-31670143

RESUMEN

Dystrophic epidermolysis bullosa (DEB) is a devastating blistering disease affecting skin and mucous membranes. It is caused by pathogenic variants in the COL7A1 gene encoding type VII collagen, and can be inherited dominantly or recessively. Recently, promising proof-of-principle has been shown for antisense oligonucleotide (AON)-mediated exon skipping as a therapeutic approach for DEB. However, the precise phenotypic effect to be anticipated from exon skipping, and which patient groups could benefit, is not yet clear. To answer these questions, we studied new clinical and molecular data on seven patients from the Dutch EB registry and reviewed the literature on COL7A1 exon skipping variants. We found that phenotypes associated with dominant exon skipping cannot be distinguished from phenotypes caused by other dominant DEB variants. Recessive exon skipping phenotypes are generally relatively mild in the spectrum of recessive DEB. Therefore, for dominant DEB, AON-mediated exon skipping is unlikely to ameliorate the phenotype. In contrast, the overall severity of phenotypes associated with recessive natural exon skipping pivots toward the milder end of the spectrum. Consequently, we anticipate AON-mediated exon skipping for recessive DEB caused by bi-allelic null variants should lead to a clinically relevant improvement of this devastating phenotype.

15.
Int J Neonatal Screen ; 5(2): 21, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33072980

RESUMEN

Spinal muscular atrophy (SMA) is one of the leading genetic causes of infant mortality with an incidence of 1:10,000. The recently-introduced antisense oligonucleotide treatment improves the outcome of this disease, in particular when applied at an early stage of progression. The genetic cause of SMA is, in >95% of cases, a homozygous deletion of the survival motor neuron 1 (SMN1) gene, which makes the low-cost detection of SMA cases as part of newborn screening programs feasible. We developed and validated a new SALSA MC002 melting curve assay that detects the absence of the SMN1 exon 7 DNA sequence without detecting asymptomatic carriers and reliably discriminates SMN1 from its genetic homolog SMN2 using crude extracts from newborn screening cards. Melting curve analysis shows peaks specific for both the SMN1 gene and the disease modifying SMN2 homolog. The detection of the SMN2 homolog, of which the only clinically relevant difference from the SMN1 gene is a single nucleotide in exon 7, was only used to confirm a correct reaction in samples that lacked the SMN1 gene, and not for SMN2 quantification. We retrieved 47 DBS samples from children with genetically-confirmed SMA, after informed consent from parents, and 375 controls from the national archive of the Dutch National Institute for Public Health and the Environment (RIVM). The assay correctly identified all anonymized and randomized SMA and control samples (i.e., sensitivity and specificity of 100%), without the detection of carriers, on the three most commonly-used PCR platforms with melting curve analysis. This test's concordance with the second-tier 'golden standard' P021 SMA MLPA test was 100%. Using the new P021-B1 version, crude extracts from DBS cards could also be used to determine the SMN2 copy number of SMA patients with a high level of accuracy. The MC002 test showed the feasibility and accuracy of SMA screening in a neonatal screening program.

18.
Cardiovasc Pathol ; 29: 19-22, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28460244

RESUMEN

OBJECTIVE: The clinical description of a novel TTR gene mutation characterized by a late onset amyloid cardiomyopathy. METHODS AND RESULTS: A 78-year-old man of Dutch origin with recent surgery for bilateral carpal tunnel syndrome (CTS) was admitted to our hospital because of heart failure with preserved ejection fraction (55%). Cardiac ultrasound showed thickened biventricular walls, and cardiac magnetic resonance imaging also showed late gadolinium enhancement. Early signs of a polyneuropathy were found by neurophysiological testing. A few months later, his 72-year-old sister was admitted to an affiliated hospital because of heart failure caused by a restrictive cardiomyopathy. In both patients, a subcutaneous abdominal fat aspirate was stained with Congo red and DNA was analyzed by direct sequencing of exons 1 to 4 of the transthyretin (TTR) gene. Both fat aspirates revealed transthyretin-derived (ATTR) amyloid. 99mTc-diphosphonate scintigraphy further confirmed cardiac ATTR amyloidosis in the male patient. DNA analysis of both patients showed a novel TTR mutation c.194C>G that encodes for the gene product TTR (p.A65G) ending up as the mature protein TTR A45G. The 56-year-old daughter of the male patient had the same TTR mutation. A full diagnostic workup did not reveal any signs of amyloidosis yet. CONCLUSIONS: A novel amyloidogenic TTR mutation was found in a Dutch family. The clinical presentation of ATTR A45G amyloidosis in the affected family members was heart failure due to a late-onset cardiomyopathy. The systemic nature of this disease was reflected by bilateral CTS and by early signs of a polyneuropathy in the index patient.


Asunto(s)
Neuropatías Amiloides Familiares/genética , Cardiomiopatías/genética , Prealbúmina/genética , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Mutación , Linaje
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...