Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Brain Behav Immun ; 120: 99-116, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38705494

RESUMEN

INTRODUCTION: Despite improved management of traumatic brain injury (TBI), it still leads to lifelong sequelae and disability, particularly in children. Chronic neuroinflammation (the so-called tertiary phase), in particular, microglia/macrophage and astrocyte reactivity, is among the main mechanisms suspected of playing a role in the generation of lesions associated with TBI. The role of acute neuroinflammation is now well understood, but its persistent effect and impact on the brain, particularly during development, are not. Here, we investigated the long-term effects of pediatric TBI on the brain in a mouse model. METHODS: Pediatric TBI was induced in mice on postnatal day (P) 7 by weight-drop trauma. The time course of neuroinflammation and myelination was examined in the TBI mice. They were also assessed by magnetic resonance, functional ultrasound, and behavioral tests at P45. RESULTS: TBI induced robust neuroinflammation, characterized by acute microglia/macrophage and astrocyte reactivity. The long-term consequences of pediatric TBI studied on P45 involved localized scarring astrogliosis, persistent microgliosis associated with a specific transcriptomic signature, and a long-lasting myelination defect consisting of the loss of myelinated axons, a decreased level of myelin binding protein, and severe thinning of the corpus callosum. These results were confirmed by reduced fractional anisotropy, measured by diffusion tensor imaging, and altered inter- and intra-hemispheric connectivity, measured by functional ultrasound imaging. In addition, adolescent mice with pediatric TBI showed persistent social interaction deficits and signs of anxiety and depressive behaviors. CONCLUSIONS: We show that pediatric TBI induces tertiary neuroinflammatory processes associated with white matter lesions and altered behavior. These results support our model as a model for preclinical studies for tertiary lesions following TBI.

2.
JAMA Netw Open ; 7(4): e247034, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38630472

RESUMEN

Importance: Cerebral small vessel diseases (CSVDs) account for one-fifth of stroke cases. Numerous familial cases remain unresolved after routine screening of known CSVD genes. Objective: To identify novel genes and mechanisms associated with familial CSVD. Design, Setting, and Participants: This 2-stage study involved linkage analysis and a case-control study; linkage analysis and whole exome and genome sequencing were used to identify candidate gene variants in 2 large families with CSVD (9 patients with CSVD). Then, a case-control analysis was conducted on 246 unrelated probands, including probands from these 2 families and 244 additional probands. All probands (clinical onset

Asunto(s)
Regiones no Traducidas 3' , Enfermedades de los Pequeños Vasos Cerebrales , Colágeno Tipo IV , Adulto , Femenino , Humanos , Persona de Mediana Edad , Regiones no Traducidas 3'/genética , Alelos , Estudios de Casos y Controles , Enfermedades de los Pequeños Vasos Cerebrales/genética , Colágeno Tipo IV/metabolismo , Isoformas de Proteínas , Mutagénesis Insercional
3.
Circ Res ; 134(2): 189-202, 2024 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-38152893

RESUMEN

BACKGROUND: Diabetes is a major risk factor for atherosclerotic cardiovascular diseases with a 2-fold higher risk of cardiovascular events in people with diabetes compared with those without. Circulating monocytes are inflammatory effector cells involved in both type 2 diabetes (T2D) and atherogenesis. METHODS: We investigated the relationship between circulating monocytes and cardiovascular risk progression in people with T2D, using phenotypic, transcriptomic, and metabolomic analyses. cardiovascular risk progression was estimated with coronary artery calcium score in a cohort of 672 people with T2D. RESULTS: Coronary artery calcium score was positively correlated with blood monocyte count and frequency of the classical monocyte subtype. Unsupervised k-means clustering based on monocyte subtype profiles revealed 3 main endotypes of people with T2D at varying risk of cardiovascular events. These observations were confirmed in a validation cohort of 279 T2D participants. The predictive association between monocyte count and major adverse cardiovascular events was validated through an independent prospective cohort of 757 patients with T2D. Integration of monocyte transcriptome analyses and plasma metabolomes showed a disruption of mitochondrial pathways (tricarboxylic acid cycle, oxidative phosphorylation pathway) that underlined a proatherogenic phenotype. CONCLUSIONS: In this study, we provide evidence that frequency and monocyte phenotypic profile are closely linked to cardiovascular risk in patients with T2D. The assessment of monocyte frequency and count is a valuable predictive marker for risk of cardiovascular events in patients with T2D. REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifier: NCT04353869.


Asunto(s)
Enfermedades Cardiovasculares , Diabetes Mellitus Tipo 2 , Humanos , Monocitos/metabolismo , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/diagnóstico , Enfermedades Cardiovasculares/diagnóstico , Enfermedades Cardiovasculares/epidemiología , Factores de Riesgo , Estudios Prospectivos , Calcio/metabolismo , Fenotipo , Factores de Riesgo de Enfermedad Cardiaca
4.
Glia ; 70(9): 1699-1719, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35579329

RESUMEN

Preterm infants often show pathologies of the cerebellum, which are associated with impaired motor performance, lower IQ and poor language skills at school ages. Using a mouse model of inflammation-induced encephalopathy of prematurity driven by systemic administration of pro-inflammatory IL-1ß, we sought to uncover causes of cerebellar damage. In this model, IL-1ß is administered between postnatal day (P) 1 to day 5, a timing equivalent to the last trimester for brain development in humans. Structural MRI analysis revealed that systemic IL-1ß treatment induced specific reductions in gray and white matter volumes of the mouse cerebellar lobules I and II (5% false discovery rate [FDR]) from P15 onwards. Preceding these MRI-detectable cerebellar volume changes, we observed damage to oligodendroglia, with reduced proliferation of OLIG2+ cells at P10 and reduced levels of the myelin proteins myelin basic protein (MBP) and myelin-associated glycoprotein (MAG) at P10 and P15. Increased density of IBA1+ cerebellar microglia were observed both at P5 and P45, with evidence for increased microglial proliferation at P5 and P10. Comparison of the transcriptome of microglia isolated from P5 cerebellums and cerebrums revealed significant enrichment of pro-inflammatory markers in microglia from both regions, but cerebellar microglia displayed a unique type I interferon signaling dysregulation. Collectively, these data suggest that perinatal inflammation driven by systemic IL-1ß leads to specific cerebellar volume deficits, which likely reflect oligodendrocyte pathology downstream of microglial activation. Further studies are now required to confirm the potential of protective strategies aimed at preventing sustained type I interferon signaling driven by cerebellar microglia as an important therapeutic target.


Asunto(s)
Enfermedades Cerebelosas , Enfermedades del Prematuro , Inflamación , Interferón Tipo I , Interleucina-1beta , Microglía , Animales , Encefalopatías/inducido químicamente , Encefalopatías/inmunología , Encefalopatías/patología , Enfermedades Cerebelosas/inducido químicamente , Enfermedades Cerebelosas/inmunología , Enfermedades Cerebelosas/patología , Cerebelo/efectos de los fármacos , Cerebelo/inmunología , Cerebelo/patología , Modelos Animales de Enfermedad , Femenino , Humanos , Recién Nacido , Recien Nacido Prematuro , Enfermedades del Prematuro/inducido químicamente , Enfermedades del Prematuro/inmunología , Enfermedades del Prematuro/patología , Inflamación/inducido químicamente , Inflamación/inmunología , Inflamación/patología , Interferón Tipo I/inmunología , Interleucina-1beta/efectos adversos , Interleucina-1beta/farmacología , Microglía/efectos de los fármacos , Microglía/inmunología , Microglía/patología , Embarazo
5.
Artículo en Inglés | MEDLINE | ID: mdl-35016039

RESUMEN

Adipose tissue is the energy storage organ providing energy to other tissues, including mammary gland, that supports the achievement of successive lactation cycles. Our objective was to investigate the ability of goats to restore body fat reserves by comparing lipogenic enzyme activities and by transcriptomic RNA-Seq data at two different physiological stages, mid- and post-lactation. Key lipogenic enzyme activities were higher in goat omental adipose tissue during mid-lactation (74 days in milk) than during the post-lactation period (300 days postpartum). RNA-Sequencing analysis revealed 19,271 expressed genes in the omental adipose tissue. The comparison between adipose transcriptome analysis from mid- and post-lactation goats highlighted 252 differentially expressed genes (padj < 0.05) between these two physiological stages. The differential expression of 11 genes was confirmed by RT-qPCR. Functional genomic analysis revealed that 31% were involved in metabolic processes among which 38% in lipid metabolism. Most of the genes involved in lipid synthesis and those in lipid transport and storage were upregulated in adipose tissue of mid- compared to post-lactation goats. In addition, adipose tissue plasticity was emphasized by genes involved in cellular signaling and tissue integrity. Network analyses also highlighted three key regulators of lipid metabolism (LEP, APOE and HNF4A) and a key target gene (VCAM1). The greatest lipogenic enzyme activities with the upregulation of genes involved in lipid metabolism highlighted a higher recovery of lipid reserves after the lactation peak than 4 months post-lactation. This study contributes to a better understanding of the molecular mechanisms controlling the body lipid reserves management during the successive lactations.


Asunto(s)
Cabras , Transcriptoma , Tejido Adiposo , Animales , Femenino , Perfilación de la Expresión Génica , Cabras/genética , Cabras/metabolismo , Lactancia/genética , Lípidos , Glándulas Mamarias Animales/metabolismo
6.
Cancer Immunol Res ; 9(3): 324-336, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33419764

RESUMEN

It is clearly established that the immune system can affect cancer response to therapy. However, the influence of the tumor microenvironment (TME) on immune cells is not completely understood. In this respect, alternative splicing is increasingly described to affect the immune system. Here, we showed that the TME, via a TGFß-dependent mechanism, increased alternative splicing events and induced the expression of an alternative isoform of the IRF1 transcription factor (IRF1Δ7) in Th1 cells. We found that the SFPQ splicing factor (splicing factor, proline- and glutamine-rich) was responsible for the IRF1Δ7 production. We also showed, in both mice and humans, that the IRF1 alternative isoform altered the full-length IRF1 transcriptional activity on the Il12rb1 promoter, resulting in decreased IFNγ secretion in Th1 cells. Thus, the IRF1Δ7 isoform was increased in the TME, and inhibiting IRF1Δ7 expression could potentiate Th1 antitumor responses.


Asunto(s)
Factor 1 Regulador del Interferón/genética , Interferón gamma/metabolismo , Neoplasias/inmunología , Empalme Alternativo , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Regulación Neoplásica de la Expresión Génica/inmunología , Técnicas de Silenciamiento del Gen , Humanos , Factor 1 Regulador del Interferón/metabolismo , Ratones , Neoplasias/genética , Neoplasias/patología , Regiones Promotoras Genéticas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Precursores del ARN/metabolismo , ARN Mensajero/metabolismo , RNA-Seq , Receptores de Interleucina-12 , Células TH1/inmunología , Células TH1/metabolismo , Escape del Tumor/genética , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología
7.
Cell Rep ; 32(11): 108141, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32937117

RESUMEN

Glucose homeostasis is maintained through organ crosstalk that regulates secretion of insulin to keep blood glucose levels within a physiological range. In type 2 diabetes, this coordinated response is altered, leading to a deregulation of beta cell function and inadequate insulin secretion. Reprogramming of white adipose tissue has a central role in this deregulation, but the critical regulatory components remain unclear. Here, we demonstrate that expression of the transcriptional coregulator GPS2 in white adipose tissue is correlated with insulin secretion rate in humans. The causality of this relationship is confirmed using adipocyte-specific GPS2 knockout mice, in which inappropriate secretion of insulin promotes glucose intolerance. This phenotype is driven by adipose-tissue-secreted factors, which cause increased pancreatic islet inflammation and impaired beta cell function. Thus, our study suggests that, in mice and in humans, GPS2 controls the reprogramming of white adipocytes to influence pancreatic islet function and insulin secretion.


Asunto(s)
Tejido Adiposo Blanco/metabolismo , Células Secretoras de Insulina/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Adipocitos Blancos/metabolismo , Tejido Adiposo/metabolismo , Animales , Diabetes Mellitus Tipo 2/metabolismo , Femenino , Glucosa/metabolismo , Intolerancia a la Glucosa/metabolismo , Inflamación/metabolismo , Insulina/metabolismo , Resistencia a la Insulina/genética , Secreción de Insulina/fisiología , Péptidos y Proteínas de Señalización Intracelular/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Obesidad/metabolismo
8.
Retrovirology ; 17(1): 25, 2020 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-32807178

RESUMEN

BACKGROUND: Alternative splicing is a key step in Human Immunodeficiency Virus type 1 (HIV-1) replication that is tightly regulated both temporally and spatially. More than 50 different transcripts can be generated from a single HIV-1 unspliced pre-messenger RNA (pre-mRNA) and a balanced proportion of unspliced and spliced transcripts is critical for the production of infectious virions. Understanding the mechanisms involved in the regulation of viral RNA is therefore of potential therapeutic interest. However, monitoring the regulation of alternative splicing events at a transcriptome-wide level during cell infection is challenging. Here we used the long-read cDNA sequencing developed by Oxford Nanopore Technologies (ONT) to explore in a quantitative manner the complexity of the HIV-1 transcriptome regulation in infected primary CD4+ T cells. RESULTS: ONT reads mapping to the viral genome proved sufficiently long to span all possible splice junctions, even distant ones, and to be assigned to a total of 150 exon combinations. Fifty-three viral RNA isoforms, including 14 new ones were further considered for quantification. Relative levels of viral RNAs determined by ONT sequencing showed a high degree of reproducibility, compared favourably to those produced in previous reports and highly correlated with quantitative PCR (qPCR) data. To get further insights into alternative splicing regulation, we then compiled quantifications of splice site (SS) usage and transcript levels to build "splice trees", a quantitative representation of the cascade of events leading to the different viral isoforms. This approach allowed visualizing the complete rewiring of SS usages upon perturbation of SS D2 and its impact on viral isoform levels. Furthermore, we produced the first dynamic picture of the cascade of events occurring between 12 and 24 h of viral infection. In particular, our data highlighted the importance of non-coding exons in viral RNA transcriptome regulation. CONCLUSION: ONT sequencing is a convenient and reliable strategy that enabled us to grasp the dynamic of the early splicing events modulating the viral RNA landscape in HIV-1 infected cells.


Asunto(s)
Empalme Alternativo/genética , Infecciones por VIH/virología , VIH-1/genética , ARN Viral/genética , Linfocitos T CD4-Positivos/virología , Regulación Viral de la Expresión Génica , Humanos , Secuenciación de Nanoporos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Sitios de Empalme de ARN , ARN Viral/metabolismo , Transcriptoma , Virión/genética
9.
Mol Metab ; 42: 101066, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32798719

RESUMEN

OBJECTIVE: Adipogenesis is critical for adipose tissue remodeling during the development of obesity. While the role of transcription factors in the orchestration of adipogenic pathways is already established, the involvement of coregulators that transduce regulatory signals into epigenome alterations and transcriptional responses remains poorly understood. The aim of our study was to investigate which pathways are controlled by G protein pathway suppressor 2 (GPS2) during the differentiation of human adipocytes. METHODS: We generated a unique loss-of-function model by RNAi depletion of GPS2 in human multipotent adipose-derived stem (hMADS) cells. We thoroughly characterized the coregulator depletion-dependent pathway alterations during adipocyte differentiation at the level of transcriptome (RNA-seq), epigenome (ChIP-seq H3K27ac), cistrome (ChIP-seq GPS2), and lipidome. We validated the in vivo relevance of the identified pathways in non-diabetic and diabetic obese patients. RESULTS: The loss of GPS2 triggers the reprogramming of cellular processes related to adipocyte differentiation by increasing the responses to the adipogenic cocktail. In particular, GPS2 depletion increases the expression of BMP4, an important trigger for the commitment of fibroblast-like progenitors toward the adipogenic lineage and increases the expression of inflammatory and metabolic genes. GPS2-depleted human adipocytes are characterized by hypertrophy, triglyceride and phospholipid accumulation, and sphingomyelin depletion. These changes are likely a consequence of the increased expression of ATP-binding cassette subfamily G member 1 (ABCG1) that mediates sphingomyelin efflux from adipocytes and modulates lipoprotein lipase (LPL) activity. We identify ABCG1 as a direct transcriptional target, as GPS2 depletion leads to coordinated changes of transcription and H3K27 acetylation at promoters and enhancers that are occupied by GPS2 in wild-type adipocytes. We find that in omental adipose tissue of obese humans, GPS2 levels correlate with ABCG1 levels, type 2 diabetic status, and lipid metabolic status, supporting the in vivo relevance of the hMADS cell-derived in vitro data. CONCLUSION: Our study reveals a dual regulatory role of GPS2 in epigenetically modulating the chromatin landscape and gene expression during human adipocyte differentiation and identifies a hitherto unknown GPS2-ABCG1 pathway potentially linked to adipocyte hypertrophy in humans.


Asunto(s)
Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 1/metabolismo , Adipocitos/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Células 3T3-L1 , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 1/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Adipocitos/fisiología , Adipogénesis/fisiología , Tejido Adiposo/metabolismo , Adulto , Animales , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Femenino , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Metabolismo de los Lípidos/fisiología , Lípidos/fisiología , Masculino , Ratones , Obesidad/metabolismo , Regiones Promotoras Genéticas/genética , Factores de Transcripción/metabolismo
10.
J Infect Dis ; 222(7): 1222-1234, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32697326

RESUMEN

Sepsis causes inflammation-induced immunosuppression with lymphopenia and alterations of CD4+ T-cell functions that renders the host prone to secondary infections. Whether and how regulatory T cells (Treg) are involved in this postseptic immunosuppression is unknown. We observed in vivo that early activation of Treg during Staphylococcus aureus sepsis induces CD4+ T-cell impairment and increases susceptibility to secondary pneumonia. The tumor necrosis factor receptor 2 positive (TNFR2pos) Treg subset endorsed the majority of effector immunosuppressive functions, and TNRF2 was particularly associated with activation of genes involved in cell cycle and replication in Treg, probably explaining their maintenance. Blocking or deleting TNFR2 during sepsis decreased the susceptibility to secondary infection. In humans, our data paralleled those in mice; the expression of CTLA-4 was dramatically increased in TNFR2pos Treg after culture in vitro with S. aureus. Our findings describe in vivo mechanisms underlying sepsis-induced immunosuppression and identify TNFR2pos Treg as targets for therapeutic intervention.


Asunto(s)
Antígenos CD4/metabolismo , Linfocitos T CD4-Positivos/metabolismo , Receptores Tipo II del Factor de Necrosis Tumoral/metabolismo , Sepsis/metabolismo , Linfocitos T Reguladores/metabolismo , Animales , Linfocitos T CD4-Positivos/citología , Células Cultivadas , Femenino , Humanos , Terapia de Inmunosupresión , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores Tipo II del Factor de Necrosis Tumoral/deficiencia , Sepsis/microbiología , Staphylococcus aureus , Linfocitos T Reguladores/citología
11.
Dev Cell ; 51(2): 145-157.e10, 2019 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-31607652

RESUMEN

Nucleus position in cells can act as a developmental cue. Mammalian oocytes position their nucleus centrally using an F-actin-mediated pressure gradient. The biological significance of nucleus centering in mammalian oocytes being unknown, we sought to assess the F-actin pressure gradient effect on the nucleus. We addressed this using a dedicated computational 3D imaging approach, biophysical analyses, and a nucleus repositioning assay in mouse oocytes mutant for cytoplasmic F-actin. We found that the cytoplasmic activity, in charge of nucleus centering, shaped the nucleus while promoting nuclear envelope fluctuations and chromatin motion. Off-centered nuclei in F-actin mutant oocytes were misshaped with immobile chromatin and modulated gene expression. Restoration of F-actin in mutant oocytes rescued nucleus architecture fully and gene expression partially. Thus, the F-actin-mediated pressure gradient also modulates nucleus dynamics in oocytes. Moreover, this study supports a mechano-transduction model whereby cytoplasmic microfilaments could modulate oocyte transcriptome, essential for subsequent embryo development.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Citoplasma/metabolismo , Membrana Nuclear/metabolismo , Oocitos/metabolismo , Actinas/metabolismo , Animales , Núcleo Celular/metabolismo , Cromatina/metabolismo , Femenino , Masculino , Meiosis/fisiología , Ratones Transgénicos
12.
Dev Biol ; 456(2): 212-225, 2019 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-31509769

RESUMEN

The tentacular system of Clytia hemisphaerica medusa (Cnidaria, Hydrozoa) has recently emerged as a promising experimental model to tackle the developmental mechanisms that regulate cell lineage progression in an early-diverging animal phylum. From a population of proximal stem cells, the successive steps of tentacle stinging cell (nematocyte) elaboration, are spatially ordered along a "cellular conveyor belt". Furthermore, the C. hemisphaerica tentacular system exhibits bilateral organisation, with two perpendicular polarity axes (proximo-distal and oral-aboral). We aimed to improve our knowledge of this cellular system by combining RNAseq-based differential gene expression analyses and expression studies of Wnt signalling genes. RNAseq comparisons of gene expression levels were performed (i) between the tentacular system and a control medusa deprived of all tentacles, nematogenic sites and gonads, and (ii) between three samples staggered along the cellular conveyor belt. The behaviour in these differential expression analyses of two reference gene sets (stem cell genes; nematocyte genes), as well as the relative representations of selected gene ontology categories, support the validity of the cellular conveyor belt model. Expression patterns obtained by in situ hybridisation for selected highly differentially expressed genes and for Wnt signalling genes are largely consistent with the results from RNAseq. Wnt signalling genes exhibit complex spatial deployment along both polarity axes of the tentacular system, with the Wnt/ß-catenin pathway probably acting along the oral-aboral axis rather than the proximo-distal axis. These findings reinforce the idea that, despite overall radial symmetry, cnidarians have a full potential for elaboration of bilateral structures based on finely orchestrated deployment of an ancient developmental gene toolkit.


Asunto(s)
Tipificación del Cuerpo/genética , Hidrozoos/genética , Vía de Señalización Wnt/genética , Animales , Biología Evolutiva/métodos , Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/genética , Hidrozoos/metabolismo
14.
Genome Biol ; 20(1): 100, 2019 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-31113491

RESUMEN

BACKGROUND: The functional determinants of H3K4me3, their potential dependency on histone H2B monoubiquitination, and their contribution to defining transcriptional regimes are poorly defined in plant systems. Unlike in Saccharomyces cerevisiae, where a single SET1 protein catalyzes H3K4me3 as part of COMPlex of proteins ASsociated with Set1 (COMPASS), in Arabidopsis thaliana, this activity involves multiple histone methyltransferases. Among these, the plant-specific SET DOMAIN GROUP 2 (SDG2) has a prominent role. RESULTS: We report that SDG2 co-regulates hundreds of genes with SWD2-like b (S2Lb), a plant ortholog of the Swd2 axillary subunit of yeast COMPASS. We show that S2Lb co-purifies with the AtCOMPASS core subunit WDR5, and both S2Lb and SDG2 directly influence H3K4me3 enrichment over highly transcribed genes. S2Lb knockout triggers pleiotropic developmental phenotypes at the vegetative and reproductive stages, including reduced fertility and seed dormancy. However, s2lb seedlings display little transcriptomic defects as compared to the large repertoire of genes targeted by S2Lb, SDG2, or H3K4me3, suggesting that H3K4me3 enrichment is important for optimal gene induction during cellular transitions rather than for determining on/off transcriptional status. Moreover, unlike in budding yeast, most of the S2Lb and H3K4me3 genomic distribution does not rely on a trans-histone crosstalk with histone H2B monoubiquitination. CONCLUSIONS: Collectively, this study unveils that the evolutionarily conserved COMPASS-like complex has been co-opted by the plant-specific SDG2 histone methyltransferase and mediates H3K4me3 deposition through an H2B monoubiquitination-independent pathway in Arabidopsis.


Asunto(s)
Arabidopsis/metabolismo , Histona Metiltransferasas/metabolismo , Histonas/metabolismo , Ubiquitinación
15.
Mol Neurobiol ; 56(10): 6928-6940, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30941734

RESUMEN

The cerebral cortex (or neocortex) is a brain structure formed during embryogenesis. The present study seeks to provide a detailed characterization of the Zn homeostatic mechanisms during cerebral cortex formation and development. To reach that goal, we have combined high-throughput RNA-sequencing analysis of the whole murine genome, X-ray fluorescence nanoimaging (XRF), inductively coupled plasma-atomic emission spectrometry (ICP-AES), and live-cell imaging of dissociated cortical neurons loaded with the Zn fluorescent probe FluoZin-3. The transcriptomic analysis was conducted from mRNAs isolated from cortices collected at embryonic (E) days 11 (E11), E13, and E17 and on postnatal day 1 (PN1) pups. This permitted to characterize the temporal pattern of expression of the main genes participating in the cellular transport, storage, and release of Zn during corticogenesis. It appears that cells of the immature cortex express a wide diversity of actors involved in Zn homeostasis with Zip7, SOD1, and metallothioneins being the most abundant transcripts throughout corticogenesis. The quantification of total Zn with XRF and ICP-AES reveals a reduction of Zn levels. Moreover, this is accompanied by a diminution of the size of the internal pools of mobilizable Zn. This study illustrates the tight temporal and spatial regulation of Zn homeostasis during cerebral brain development.


Asunto(s)
Corteza Cerebral/metabolismo , Zinc/metabolismo , Animales , Desarrollo Embrionario , Proteínas de Transporte de Membrana/metabolismo , Ratones Endogámicos C57BL , Neuronas/metabolismo , Reproducibilidad de los Resultados , Factores de Transcripción/metabolismo , Transcriptoma/genética
16.
Cancer Discov ; 9(1): 130-147, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30348676

RESUMEN

Patients carrying an inactive NF1 allele develop tumors of Schwann cell origin called neurofibromas (NF). Genetically engineered mouse models have significantly enriched our understanding of plexiform forms of NFs (pNF). However, this has not been the case for cutaneous neurofibromas (cNF), observed in all NF1 patients, as no previous model recapitulates their development. Here, we show that conditional Nf1 inactivation in Prss56-positive boundary cap cells leads to bona fide pNFs and cNFs. This work identifies subepidermal glia as a likely candidate for the cellular origin of cNFs and provides insights on disease mechanisms, revealing a long, multistep pathologic process in which inflammation-related signals play a pivotal role. This new mouse model is an important asset for future clinical and therapeutic investigations of NF1-associated neurofibromas. SIGNIFICANCE: Patients affected by NF1 develop numerous cNFs. We present a mouse model that faithfully recapitulates cNFs, identify a candidate cell type at their origin, analyze the steps involved in their formation, and show that their development is dramatically accelerated by skin injury. These findings have important clinical/therapeutic implications.This article is highlighted in the In This Issue feature, p. 1.


Asunto(s)
Neurofibroma/metabolismo , Neurofibromatosis 1/metabolismo , Neurofibromina 1/genética , Células de Schwann/metabolismo , Neoplasias Cutáneas/metabolismo , Animales , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones , Ratones Noqueados , Mutación , Neurofibroma/etiología , Neurofibroma/genética , Neurofibroma/fisiopatología , Neurofibromatosis 1/complicaciones , Neurofibromatosis 1/genética , Neurofibromatosis 1/fisiopatología , Células de Schwann/fisiología , Neoplasias Cutáneas/etiología , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/fisiopatología
17.
Nat Commun ; 9(1): 4725, 2018 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-30413696

RESUMEN

The striatum controls behaviors via the activity of direct and indirect pathway projection neurons (dSPN and iSPN) that are intermingled in all compartments. While such cellular mosaic ensures the balanced activity of the two pathways, its developmental origin and pattern remains largely unknown. Here, we show that both SPN populations are specified embryonically and intermix progressively through multidirectional iSPN migration. Using conditional mutant mice, we found that inactivation of the dSPN-specific transcription factor Ebf1 impairs selective dSPN properties, including axon pathfinding, while molecular and functional features of iSPN were preserved. Ebf1 mutation disrupted iSPN/dSPN intermixing, resulting in an uneven distribution. Such architectural defect was selective of the matrix compartment, highlighting that intermixing is a parallel process to compartment formation. Our study reveals while iSPN/dSPN specification is largely independent, their intermingling emerges from an active migration of iSPN, thereby providing a novel framework for the building of striatal architecture.


Asunto(s)
Neostriado/fisiología , Neuronas/fisiología , Animales , Diferenciación Celular , Movimiento Celular , Embrión de Mamíferos/fisiología , Eliminación de Gen , Ratones Endogámicos C57BL , Neostriado/embriología , Neuronas/citología , Transactivadores/deficiencia , Transactivadores/metabolismo
18.
Dev Cell ; 42(5): 527-541.e4, 2017 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-28867488

RESUMEN

Skeletal muscle contraction is mediated by myofibrils, complex multi-molecular scaffolds structured into repeated units, the sarcomeres. Myofibril structure and function have been extensively studied, but the molecular processes regulating its formation within the differentiating muscle cell remain largely unknown. Here we show in zebrafish that genetic interference with the Quaking RNA-binding proteins disrupts the initial steps of myofibril assembly without affecting early muscle differentiation. Using RNA sequencing, we demonstrate that Quaking is required for accumulation of the muscle-specific tropomyosin-3 transcript, tpm3.12. Further functional analyses reveal that Tpm3.12 mediates Quaking control of myofibril formation. Moreover, we identified a Quaking-binding site in the 3' UTR of tpm3.12 transcript, which is required in vivo for tpm3.12 accumulation and myofibril formation. Our work uncovers a Quaking/Tpm3 pathway controlling de novo myofibril assembly. This unexpected developmental role for Tpm3 could be at the origin of muscle defects observed in human congenital myopathies associated with tpm3 mutation.


Asunto(s)
Miofibrillas/metabolismo , Proteínas de Unión al ARN/metabolismo , Tropomiosina/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Regiones no Traducidas 3'/genética , Animales , Sitios de Unión , Diferenciación Celular/genética , Desarrollo Embrionario/genética , Regulación del Desarrollo de la Expresión Génica , Células Musculares/citología , Células Musculares/metabolismo , Desarrollo de Músculos/genética , Miosinas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Sarcómeros/metabolismo , Somitos/embriología , Somitos/metabolismo , Pez Cebra/embriología , Pez Cebra/genética
19.
Biotechnol Biofuels ; 10: 209, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28912831

RESUMEN

BACKGROUND: The hydrolysis of biomass to simple sugars used for the production of biofuels in biorefineries requires the action of cellulolytic enzyme mixtures. During the last 50 years, the ascomycete Trichoderma reesei, the main source of industrial cellulase and hemicellulase cocktails, has been subjected to several rounds of classical mutagenesis with the aim to obtain higher production levels. During these random genetic events, strains unable to produce cellulases were generated. Here, whole genome sequencing and transcriptomic analyses of the cellulase-negative strain QM9978 were used for the identification of mutations underlying this cellulase-negative phenotype. RESULTS: Sequence comparison of the cellulase-negative strain QM9978 to the reference strain QM6a identified a total of 43 mutations, of which 33 were located either close to or in coding regions. From those, we identified 23 single-nucleotide variants, nine InDels, and one translocation. The translocation occurred between chromosomes V and VII, is located upstream of the putative transcription factor vib1, and abolishes its expression in QM9978 as detected during the transcriptomic analyses. Ectopic expression of vib1 under the control of its native promoter as well as overexpression of vib1 under the control of a strong constitutive promoter restored cellulase expression in QM9978, thus confirming that the translocation event is the reason for the cellulase-negative phenotype. Gene deletion of vib1 in the moderate producer strain QM9414 and in the high producer strain Rut-C30 reduced cellulase expression in both cases. Overexpression of vib1 in QM9414 and Rut-C30 had no effect on cellulase production, most likely because vib1 is already expressed at an optimal level under normal conditions. CONCLUSION: We were able to establish a link between a chromosomal translocation in QM9978 and the cellulase-negative phenotype of the strain. We identified the transcription factor vib1 as a key regulator of cellulases in T. reesei whose expression is absent in QM9978. We propose that in T. reesei, as in Neurospora crassa, vib1 is involved in cellulase induction, although the exact mechanism remains to be elucidated. The data presented here show an example of a combined genome sequencing and transcriptomic approach to explain a specific trait, in this case the QM9978 cellulase-negative phenotype, and how it helps to better understand the mechanisms during cellulase gene regulation. When focusing on mutations on the single base-pair level, changes on the chromosome level can be easily overlooked and through this work we provide an example that stresses the importance of the big picture of the genomic landscape during analysis of sequencing data.

20.
Bioinformatics ; 33(14): 2212-2213, 2017 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-28369225

RESUMEN

MOTIVATION: Data management and quality control of output from Illumina sequencers is a disk space- and time-consuming task. Thus, we developed Aozan to automatically handle data transfer, demultiplexing, conversion and quality control once a run has finished. This software greatly improves run data management and the monitoring of run statistics via automatic emails and HTML web reports. AVAILABILITY AND IMPLEMENTATION: Aozan is implemented in Java and Python, supported on Linux systems, and distributed under the GPLv3 License at: http://www.outils.genomique.biologie.ens.fr/aozan/ . Aozan source code is available on GitHub: https://github.com/GenomicParisCentre/aozan . CONTACT: aozan@biologie.ens.fr.


Asunto(s)
Análisis de Secuencia de ADN , Programas Informáticos , Humanos , Control de Calidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA