Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Am J Hum Genet ; 111(3): 529-543, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38387458

RESUMEN

The Rab family of guanosine triphosphatases (GTPases) includes key regulators of intracellular transport and membrane trafficking targeting specific steps in exocytic, endocytic, and recycling pathways. DENND5B (Rab6-interacting Protein 1B-like protein, R6IP1B) is the longest isoform of DENND5, an evolutionarily conserved DENN domain-containing guanine nucleotide exchange factor (GEF) that is highly expressed in the brain. Through exome sequencing and international matchmaking platforms, we identified five de novo variants in DENND5B in a cohort of five unrelated individuals with neurodevelopmental phenotypes featuring cognitive impairment, dysmorphism, abnormal behavior, variable epilepsy, white matter abnormalities, and cortical gyration defects. We used biochemical assays and confocal microscopy to assess the impact of DENND5B variants on protein accumulation and distribution. Then, exploiting fluorescent lipid cargoes coupled to high-content imaging and analysis in living cells, we investigated whether DENND5B variants affected the dynamics of vesicle-mediated intracellular transport of specific cargoes. We further generated an in silico model to investigate the consequences of DENND5B variants on the DENND5B-RAB39A interaction. Biochemical analysis showed decreased protein levels of DENND5B mutants in various cell types. Functional investigation of DENND5B variants revealed defective intracellular vesicle trafficking, with significant impairment of lipid uptake and distribution. Although none of the variants affected the DENND5B-RAB39A interface, all were predicted to disrupt protein folding. Overall, our findings indicate that DENND5B variants perturb intracellular membrane trafficking pathways and cause a complex neurodevelopmental syndrome with variable epilepsy and white matter involvement.


Asunto(s)
Epilepsia , Discapacidad Intelectual , Trastornos del Neurodesarrollo , Humanos , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/metabolismo , Encéfalo/metabolismo , Epilepsia/genética , Epilepsia/metabolismo , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Lípidos , Discapacidad Intelectual/genética , Discapacidad Intelectual/metabolismo , Proteínas de Unión al GTP rab/metabolismo
2.
Int J Mol Sci ; 24(7)2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-37047546

RESUMEN

S737F is a Cystic Fibrosis (CF) transmembrane conductance regulator (CFTR) missense variant. The aim of our study was to describe the clinical features of a cohort of individuals carrying this variant. In parallel, by exploiting ex vivo functional and molecular analyses on nasal epithelia derived from a subset of S737F carriers, we evaluated its functional impact on CFTR protein as well as its responsiveness to CFTR modulators. We retrospectively collected clinical data of all individuals bearing at least one S737F CFTR variant and followed at the CF Centre of Tuscany region (Italy). Nasal brushing was performed in cooperating individuals. At study end clinical data were available for 10 subjects (mean age: 14 years; range 1-44 years; 3 adult individuals). Five asymptomatic subjects had CF, 2 were CRMS/CFSPID and 3 had an inconclusive diagnosis. Ex vivo analysis on nasal epithelia demonstrated different levels of CF activity. In particular, epithelia derived from asymptomatic CF subjects and from one of the subjects with inconclusive diagnosis showed reduced CFTR activity that could be rescued by treatment with CFTR modulators. On the contrary, in the epithelia derived from the other two individuals with an inconclusive diagnosis, the CFTR-mediated current was similar to that observed in epithelia derived from healthy donors. In vitro functional and biochemical analysis on S737F-CFTR expressed in immortalized bronchial cells highlighted a modest impairment of the channel activity, that was improved by treatment with ivacaftor alone or in combination with tezacaftor/elexacaftor. Our study provide evidence towards the evaluation of CFTR function on ex vivo nasal epithelial cell models as a new assay to help clinicians to classify individuals, in presence of discordance between clinical picture, sweat test and genetic profile.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística , Fibrosis Quística , Adulto , Humanos , Adolescente , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/genética , Fibrosis Quística/diagnóstico , Estudios Retrospectivos , Benzodioxoles/farmacología , Benzodioxoles/uso terapéutico , Mucosa Nasal , Línea Celular , Mutación
3.
J Cyst Fibros ; 22(3): 525-537, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36543707

RESUMEN

BACKGROUND: Cystic fibrosis is caused by mutations impairing expression, trafficking, stability and/or activity of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel. The G1244E mutation causes a severe gating defect that it is not completely rescued by ivacaftor but requires the use of a second compound (a co-potentiator). Recently, it has been proposed that the corrector elexacaftor may act also as a co-potentiator. METHODS: By using molecular, biochemical and functional analyses we performed an in-depth characterization of the G1244E-CFTR mutant in heterologous and native cell models. RESULTS: Our studies demonstrate that processing and function of the mutant protein, as well as its pharmacological sensitivity, are markedly dependent on cell background. In heterologous expression systems, elexacaftor mainly acted on G1244E-CFTR as a co-potentiator, thus ameliorating the gating defect. On the contrary, in the native nasal epithelial cell model, elexacaftor did not act as a co-potentiator, but it increased mature CFTR expression possibly by improving mutant's defective stability at the plasma membrane. CONCLUSIONS: Our study highlights the importance of the cell background in the evaluation of CFTR modulator effects. Further, our results draw attention to the need for the development of novel potentiators having different mechanisms with respect to ivacaftor to improve channel activity for mutants with severe gating defect.


Asunto(s)
Fibrosis Quística , Humanos , Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/genética , Fibrosis Quística/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Aminofenoles/farmacología , Benzodioxoles/farmacología , Mutación
4.
Int J Mol Sci ; 23(6)2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35328596

RESUMEN

Loss-of-function mutations of the CFTR gene cause cystic fibrosis (CF) through a variety of molecular mechanisms involving altered expression, trafficking, and/or activity of the CFTR chloride channel. The most frequent mutation among CF patients, F508del, causes multiple defects that can be, however, overcome by a combination of three pharmacological agents that improve CFTR channel trafficking and gating, namely, elexacaftor, tezacaftor, and ivacaftor. This study was prompted by the evidence of two CF patients, compound heterozygous for F508del and a minimal function variant, who failed to obtain any beneficial effects following treatment with the triple drug combination. Functional studies on nasal epithelia generated in vitro from these patients confirmed the lack of response to pharmacological treatment. Molecular characterization highlighted the presence of an additional amino acid substitution, L467F, in cis with the F508del variant, demonstrating that both patients were carriers of a complex allele. Functional and biochemical assays in heterologous expression systems demonstrated that the double mutant L467F-F508del has a severely reduced activity, with negligible rescue by CFTR modulators. While further studies are needed to investigate the actual prevalence of the L467F-F508del allele, our results suggest that this complex allele should be taken into consideration as plausible cause in CF patients not responding to CFTR modulators.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística , Fibrosis Quística , Alelos , Aminofenoles , Benzodioxoles/farmacología , Benzodioxoles/uso terapéutico , Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Combinación de Medicamentos , Humanos , Indoles , Mutación , Pirazoles , Piridinas , Pirrolidinas , Quinolonas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...