Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Chempluschem ; 89(6): e202300690, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38426670

RESUMEN

In this work, we describe the synthesis of new 4-organyl-5-(organylselanyl)thiazol-2-amine hybrids through a one-pot two-step protocol. The transition metal-free method involves the use of ultrasound as an alternative energy source and Oxone® as oxidant. To obtain the products, a telescoping approach was used, in which 4-organylthiazol-2-amines were firstly prepared under ultrasonic irradiation, followed by the addition of diorganyl diselenides and Oxone®. Thus, 16 compounds were prepared, with yields ranging from 61 % to 98 %, using 2-bromoacetophenone derivatives and diorganyl diselenides as easily available starting materials.

2.
J Biochem Mol Toxicol ; 38(1): e23535, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37711070

RESUMEN

Redox imbalance leads to oxidative stress that causes irreversible cellular damage. The incorporation of the antioxidant element selenium (Se) in the structure of pyridinium salts has been used as a strategy in chemical synthesis and can be useful in drug development. We investigated the antioxidant activity of Se-containing pyridinium salts (named Compounds 3A, 3B, and 3C) through in vitro tests. We focused our study on liver protein carbonylation, liver lipoperoxidation, free radical scavenging activity (1,1-diphenyl-2-picryl-hydrazil [DPPH]; 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid [ABTS]), and enzyme-mimetic activity assays (glutathione S-transferase [GST]-like; superoxide dismutase [SOD]-like). In addition, 2-(4-chlorophenyl)-2-oxoethyl)-2-((phenylselanyl)methyl)pyridin-1-ium bromide (3C) was selected to evaluate the acute oral toxicity in mice due to the best antioxidant profile. The three compounds were effective in reducing the levels of protein carbonylation and lipoperoxidation in the liver in a µM concentration range. All compounds demonstrated scavenger activity of DPPH and ABTS radicals, and GST-like action. No significant effects were detected in the SOD-like assay. Experimental data also showed that the acute oral treatment of mice with Compound 3C (50 and 300 mg/kg) did not cause mortality or change markers of liver and kidney functions. In summary, our findings reveal the antioxidant potential of Se-containing pyridinium salts in liver tissue, which could be related to their radical scavenging ability and mimetic action on the GST enzyme. They also demonstrate a low toxicity potential for Compound 3C. Together, the promising results open space for future studies on the therapeutic application of these molecules.


Asunto(s)
Benzotiazoles , Compuestos de Bifenilo , Hepatopatías , Selenio , Ácidos Sulfónicos , Ratones , Animales , Antioxidantes/metabolismo , Selenio/farmacología , Sales (Química)/farmacología , Sales (Química)/metabolismo , Estrés Oxidativo , Hepatopatías/metabolismo , Superóxido Dismutasa/metabolismo , Hígado/metabolismo , Preparaciones Farmacéuticas/metabolismo
3.
Molecules ; 28(21)2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37959771

RESUMEN

Selenium is an essential trace element in living organisms, and is present in selenoenzymes with antioxidant activity, like glutathione peroxidase (GPx) and thioredoxin reductase (TrxR). The search for small selenium-containing molecules that mimic selenoenzymes is a strong field of research in organic and medicinal chemistry. In this review, we review the synthesis and bioassays of new and known organoselenium compounds with antioxidant activity, covering the last five years. A detailed description of the synthetic procedures and the performed in vitro and in vivo bioassays is presented, highlighting the most active compounds in each series.


Asunto(s)
Compuestos de Organoselenio , Selenio , Oligoelementos , Antioxidantes/química , Selenio/farmacología , Estrés Oxidativo , Glutatión Peroxidasa/metabolismo , Compuestos de Organoselenio/farmacología , Compuestos de Organoselenio/química , Reductasa de Tiorredoxina-Disulfuro/metabolismo
4.
Chemistry ; 29(59): e202301934, 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37544915

RESUMEN

Herein, we describe a new method for the synthesis of α-carbonyl selenocyanates by reacting triselenium dicyanide (TSD) and styrenes under blue light irradiation and O2 atmosphere. The reactions are triggered by the formation of Se-centered radical species, followed by the addition/oxidation of the styrene π-bond. α-Carbonyl selenocyanates and α-hydroxy selenocyanates were obtained in moderate to excellent yields from aryl- and alkyl-substituted alkenes, respectively. It was demonstrated that α-carbonyl selenocyanates could be used as a synthetic platform in a multicomponent reaction strategy to prepare 2-phenylimidazo[1,2-a]pyridine derivatives, which were evaluated for their photophysical properties. Overall, this new method provides a useful tool for synthesizing α-carbonyl selenocyanates, and demonstrates their potential for use in the synthesis of other compounds, thus giving new synthetic opportunities to construct organic selenocyanate compounds.

5.
Molecules ; 28(13)2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37446698

RESUMEN

A general methodology to access valuable 4-(phenylchalcogenyl)tetrazolo[1,5-a]quinolines was developed by the reaction of 2-azidobenzaldehyde with phenylchalcogenylacetonitriles (sulfur and selenium) in the presence of potassium carbonate (20 mol%) as a catalyst. The reactions were conducted using a mixture of dimethylsulfoxide and water (7:3) as solvent at 80 °C for 4 h. This new methodology presents a good functional group tolerance to electron-deficient and electron-rich substituents, affording a total of twelve different 4-(phenylchalcogenyl)tetrazolo[1,5-a]quinolines selectively in moderate to excellent yields. The structure of the synthesized 4-(phenylselanyl)tetrazolo[1,5-a]quinoline was confirmed by X-ray analysis.


Asunto(s)
Quinolinas , Quinolinas/química , Agua , Solventes , Catálisis , Dimetilsulfóxido
6.
Curr Med Chem ; 30(21): 2357-2395, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35708081

RESUMEN

Neurodegenerative and mental disorders are a public health burden with pharmacological treatments of limited efficacy. Organoselenium compounds are receiving great attention in medicinal chemistry mainly because of their antioxidant and immunomodulatory activities, with a multi-target profile that can favor the treatment of multifactorial diseases. Therefore, the purpose of this review is to discuss recent preclinical studies about organoselenium compounds as therapeutic agents for the management of mental (e.g., depression, anxiety, bipolar disorder, and schizophrenia) and neurodegenerative diseases (e.g., Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and multiple sclerosis). We have summarized around 70 peer-reviewed articles from 2016 to the present that used in silico, in vitro, and/or in vivo approaches to assess the neuropharmacology of selenium- containing compounds. Among the diversity of organoselenium molecules investigated in the last five years, diaryl diselenides, Ebselen-derivatives, and Se-containing heterocycles are the most representative. Ultimately, this review is expected to provide disease-oriented information regarding the neuropharmacology of organoselenium compounds that can be useful for the design, synthesis, and pharmacological characterization of novel bioactive molecules that can potentially be clinically viable candidates.


Asunto(s)
Trastornos Mentales , Compuestos de Organoselenio , Humanos , Neurofarmacología , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Antioxidantes/química , Trastornos Mentales/tratamiento farmacológico , Compuestos de Organoselenio/farmacología , Compuestos de Organoselenio/uso terapéutico , Compuestos de Organoselenio/química
7.
Curr Med Chem ; 30(21): 2449-2462, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36065927

RESUMEN

BACKGROUND: This study presents the synthesis and multi-target behavior of the new 5'-hydroxy-3-(chalcogenyl-triazoyl)-thymidine and the biological evaluation of these compounds as antioxidant and anti-HIV agents. OBJECTIVE: Antiretroviral therapy induces oxidative stress. Based on this, this manuscript's main objective is to prepare compounds that combine anti-HIV and antioxidant activities. METHODS: The compounds were prepared from commercially available AZT through a copper-catalyzed Huisgen 1,3-dipolar cycloaddition exploiting the AZT azide group and chalcogenyl alkynes. RESULTS: The chalcogenium-AZT derivatives were obtained in good yields via click chemistry. The compounds evaluated showed antioxidant and anti-HIV activity. Additionally, in vivo toxicity of this class of compounds was also evaluated. The representative nucleoside did not change the survival, behavior, biochemical hepatic, or renal markers compared to the control mice. CONCLUSION: Data suggest the feasibility of modifying the AZT nucleus with simple organohalogen fragments, exploring the reactivity of the azide group via 1,3-dipolar Huisgen cycloaddition reaction. The design of these new compounds showed the initially desired biological activities.


Asunto(s)
Fármacos Anti-VIH , Infecciones por VIH , Animales , Ratones , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Azidas/química , Fármacos Anti-VIH/farmacología , Fármacos Anti-VIH/uso terapéutico , Fármacos Anti-VIH/química , Infecciones por VIH/tratamiento farmacológico , Estrés Oxidativo , Zidovudina/farmacología , Zidovudina/metabolismo
8.
Org Biomol Chem ; 20(45): 8952-8961, 2022 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-36326093

RESUMEN

We report a strategy for the direct synthesis of 3-organylselanylthiochromones and 3-organylselanylchromones via the radical cyclization reaction between alkynyl aryl ketones containing an ortho-thiopropyl/methoxy group and diorganyl diselenides promoted by Oxone®. This method allows the construction and seleno-functionalization of thiochromones and chromones using Oxone® as a stable and non-hazardous oxidizing agent in the presence of CH3CN at 82 °C. These reactions tolerate a variety of substituents, and allowed the synthesis of twenty-one new 3-organylselanylthiochromones and selanylchromones in good to excellent yields (55-95%). Additionally, the developed method proved to be suitable for scale up (3.0 mmol, 80%), and the synthetic usefulness of the prepared compounds was demonstrated in the oxidation of 2-phenyl-3-(phenylselanyl)-4H-thiochromen-4-one.


Asunto(s)
Cromonas , Cetonas , Ciclización , Catálisis
9.
J Org Chem ; 87(6): 4273-4283, 2022 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-35245049

RESUMEN

We report herein an alternative method for the synthesis of seleno-dibenzocycloheptenones and seleno-spiro[5.5]trienones through the radical cyclization of biaryl ynones in the presence of diorganyl diselenides, using Oxone as a green oxidizing agent. The reactions were conducted using acetonitrile as the solvent in a sealed tube at 100 °C. The protocol is operationally simple and scalable, exhibits high regioselectivity, and allows the synthesis of 24 dibenzocycloheptenones/spiro[5.5]trienones in yields of up to 99%, 17 of which are unpublished compounds. Additionally, synthetic transformations of the prepared compounds, such as oxidation and reduction reactions, are demonstrated.


Asunto(s)
Compuestos de Espiro , Ciclización , Oxidación-Reducción , Solventes
10.
Chem Asian J ; 17(8): e202101394, 2022 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-35294794

RESUMEN

A metal- and catalyst-free photo-promoted cyclization of properly substituted vinyl selenides was developed using UVA irradiation. A total of eighteen new C3-unsubstituted 2-selanyl benzochalcogenophenes (benzofurans, benzothiophenes and benzoselenophenes) were prepared in 30-86% yield after irradiation with UVA at room temperature. The usefulness of the title compounds was demonstrated in the easy functionalization of the remaining free C-H bond of the benzochalcogenophenes to form new C-Se and C-Br bonds by simple procedures. Furthermore, the reaction can be performed under natural sunlight irradiation and the solvent is easily reused further in several subsequent runs.


Asunto(s)
Benzofuranos , Rayos Ultravioleta , Catálisis , Ciclización , Solventes
11.
Molecules ; 26(24)2021 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-34946605

RESUMEN

Oxone is a commercially available oxidant, composed of a mixture of three inorganic species, being the potassium peroxymonosulfate (KHSO5) the reactive one. Over the past few decades, this cheap and environmentally friendly oxidant has become a powerful tool in organic synthesis, being extensively employed to mediate the construction of a plethora of important compounds. This review summarizes the recent advances in the Oxone-mediated synthesis of N-, O- and chalcogen-containing heterocyclic compounds, through a wide diversity of reactions, starting from several kinds of substrate, highlighting the main synthetic differences, advantages, the scope and limitations.

12.
Int J Mol Sci ; 22(13)2021 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-34208928

RESUMEN

The development of new antiviral drugs against SARS-CoV-2 is a valuable long-term strategy to protect the global population from the COVID-19 pandemic complementary to the vaccination. Considering this, the viral main protease (Mpro) is among the most promising molecular targets in light of its importance during the viral replication cycle. The natural flavonoid quercetin 1 has been recently reported to be a potent Mpro inhibitor in vitro, and we explored the effect produced by the introduction of organoselenium functionalities in this scaffold. In particular, we report here a new synthetic method to prepare previously inaccessible C-8 seleno-quercetin derivatives. By screening a small library of flavonols and flavone derivatives, we observed that some compounds inhibit the protease activity in vitro. For the first time, we demonstrate that quercetin (1) and 8-(p-tolylselenyl)quercetin (2d) block SARS-CoV-2 replication in infected cells at non-toxic concentrations, with an IC50 of 192 µM and 8 µM, respectively. Based on docking experiments driven by experimental evidence, we propose a non-covalent mechanism for Mpro inhibition in which a hydrogen bond between the selenium atom and Gln189 residue in the catalytic pocket could explain the higher Mpro activity of 2d and, as a result, its better antiviral profile.


Asunto(s)
Antivirales/química , Quercetina/química , SARS-CoV-2/metabolismo , Selenio/química , Proteínas de la Matriz Viral/antagonistas & inhibidores , Animales , Antivirales/metabolismo , Antivirales/farmacología , Sitios de Unión , COVID-19/patología , COVID-19/virología , Dominio Catalítico , Chlorocebus aethiops , Humanos , Enlace de Hidrógeno , Simulación del Acoplamiento Molecular , Inhibidores de Proteasas/química , Inhibidores de Proteasas/metabolismo , Inhibidores de Proteasas/farmacología , Quercetina/metabolismo , Quercetina/farmacología , SARS-CoV-2/aislamiento & purificación , Selenio/metabolismo , Células Vero , Proteínas de la Matriz Viral/metabolismo , Replicación Viral/efectos de los fármacos
13.
Molecules ; 26(8)2021 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-33921844

RESUMEN

We describe herein an alternative transition-metal-free procedure to access 3,4-bis(butylselanyl)selenophenes and the so far unprecedented 3-(butylselanyl)-4-alkoxyselenophenes. The protocol involves the 5-endo-dig electrophilic cyclization of 1,3-diynes promoted by electrophilic organoselenium species, generated in situ through the oxidative cleavage of the Se-Se bond of dibutyl diselenide using Oxone® as a green oxidant. The selective formation of the title products was achieved by controlling the solvent identity and the amount of dibutyl diselenide. By using 4.0 equiv of dibutyl diselenide and acetonitrile as solvent at 80 °C, four examples of 3,4-bis(butylselanyl)selenophenes were obtained in moderate to good yields (40-78%). When 3.0 equiv of dibutyl diselenide were used, in the presence of aliphatic alcohols as solvent/nucleophiles under reflux, 10 3-(butylselanyl)-4-alkoxyselenophenes were selectively obtained in low to good yields (15-80%).

14.
J Org Chem ; 86(20): 14016-14027, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-33750133

RESUMEN

A new method was developed for the synthesis of 4-chalcogenyl-1H-isochromen-1-ones through the 6-endo-dig electrophilic cyclization of 2-alkynylaryl esters and diorganyl dichalcogenides under ultrasound irradiation. The reactions were performed under mild conditions, using Oxone as a green oxidant to promote the cleavage of the chalcogen-chalcogen bond in diorganyl diselenides and ditellurides to generate electrophilic species in situ. A total of 25 compounds were selectively obtained after 30-70 min, in good to excellent yields (74-95%). This procedure was extended to prepare 5H-selenopheno[3,2-c]isochromen-5-ones. Additionally, for the first time, the 4-chalcogenyl-1H-isochromen-1-ones were used as substrates in the thionation reaction, using Lawesson's reagent and microwave irradiation under solvent-free conditions, obtaining the thio derivatives in yields of up to 99% in only 15 min.


Asunto(s)
Estructura Molecular , Catálisis , Ciclización , Solventes , Ácidos Sulfúricos
15.
Chem Rec ; 21(10): 2855-2879, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33735500

RESUMEN

The present review describes the successful application of organoboron compounds in transition-metal-free C-S, C-Se, and C-Te bond formations. We presented studies regarding these C-Chalcogen bond formations using organoboron reagents, such as boronic acids, boronic esters, borate anions, and several sources of chalcogen atoms/moieties. Moreover, a broad range of transition-metal-free approaches to synthesize sulfides, selenides, and tellurides were described using conventional heating methods, which are sometimes green since they use green solvents, safe reagents, among others. Furthermore, protocols using alternative energy sources, including ultrasound, microwave irradiation, photocatalysis, and electrolytic processes, were also shown to be suitable. These protocols were applied to prepare a broad scope of functionalized chalcogenides with high molecular diversity. These studies and their proposed mechanisms were also reported herein in addition to the reuse of reaction promoters.

16.
Org Biomol Chem ; 19(3): 596-604, 2021 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-33355583

RESUMEN

We describe herein an alternative and transition-metal-free procedure for the access of benzo[b]chalcogenophenes fused to selenophenes via intramolecular cyclization of 1,3-diynes. This efficient protocol involves a double cyclization of 1,3-diynyl chalcogen derivatives promoted by the electrophilic species of organoselenium generated in situ by the oxidative cleavage of the Se-Se bond of dibutyl diselenide using Oxone® in acetonitrile as solvent in an open-flask at 80 °C. In this study, 15 selenophenes with broad substrate scope were prepared in moderate to excellent yields (55-98%) with short reaction times (0.5-3.0 h).

17.
J Org Chem ; 86(2): 1721-1729, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33382609

RESUMEN

We report a protocol for the synthesis of 3-organyl-4-(organylchalcogenyl)isoquinoline-2-oxides via electrophilic cyclization between alkynylbenzaldoximes and diorganyl dichalcogenides promoted by Oxone. A total of 21 3-organyl-4-(organylchalcogenyl)isoquinoline-2-oxides were selectively obtained in yields of up 93% under an ultrasound irradiation condition in short reaction times (10-70 min). Additionally, the synthetic usefulness of the 3-phenyl-4-(phenylselanyl)isoquinoline-2-oxide was demonstrated in the annulation reaction with 1-(2-bromophenyl)-3-phenylprop-2-yn-1-one and in the deoxygenation reaction with phenylboronic acid.

18.
Med Chem ; 17(6): 667-676, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32242787

RESUMEN

BACKGROUND: Quinoline derivatives have been attracted much attention in drug discovery, and synthetic derivatives of these scaffolds present a range of pharmacological activities. Therefore, organoselenium compounds are valuable scaffolds in organic synthesis because of their pharmacological activities and their use as versatile building blocks for regio-, chemo-and stereoselective reactions. Thus, the synthesis of selenium-containing quinolines has great significance, and their applicability range from simple antioxidant agents, to selective DNA-binding and photocleaving agents. OBJECTIVE: In the present study, we describe the synthesis and antioxidant activity in vitro of new 7- chloro-N(arylselanyl)quinolin-4-amines 5 by the reaction of 4,7-dichloroquinoline 4 with (arylselanyl)- amines 3. METHODS: For the synthesis of 7-chloro-N(arylselanyl)quinolin-4-amines 5, we performed the reaction of (arylselanyl)-amines 3 with 4,7-dichloroquinoline 4 in the presence of Et3N at 120 °C in a sealed tube. The antioxidant activities of the compounds 5 were evaluated by the following in vitro assays: 2,2- diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity, 2,2-azinobis-3- ethylbenzothiazoline-6-sulfonic acid (ABTS), ferric ion reducing antioxidant power (FRAP), nitric oxide (NO) scavenging and superoxide dismutase-like activity (SOD-Like). RESULTS: 7-Chloro-N(arylselanyl)quinolin-4-amines 5a-d have been synthesized in yields ranging from 68% to 82% by the reaction of 4,7-dichloroquinoline 4 with arylselanyl-amines 3a-d using Et3N as a base, at 120 °C, in a sealed tube for 24 hours and tolerates different substituents, such as -OMe and -Cl, in the arylselanyl moiety. The obtained compounds 5a-d presented significant results concerning the antioxidant potential, which had an effect in the tests of inhibition of radical's DPPH, ABTS+ and NO, as well as in the analysis that evaluates the capacity (FRAP) and in the superoxide dismutase-like activity assay (SOD-Like). It is worth mentioning that 7-chloro- N(arylselanyl)quinolin-4-amine 5b presented excellent results, demonstrating a better antioxidant capacity when compared to the others. CONCLUSION: According to the obtained results, 7-chloro-N(arylselanyl)quinolin-4-amines 5 were synthesized in good yields by the reaction of 4,7-dichloroquinoline with arylselanyl-amines and tolerated different substituents in the arylselanyl moiety. The tested compounds presented significant antioxidant potential in the tests of inhibition of DPPH, ABTS+, and NO radicals, as well as in the FRAP and superoxide dismutase-like activity assays (SOD-Like).


Asunto(s)
Antioxidantes/síntesis química , Antioxidantes/farmacología , Quinolinas/síntesis química , Quinolinas/farmacología , Selenio/química , Aminas/química , Antioxidantes/química , Benzotiazoles/química , Técnicas de Química Sintética , Óxido Nítrico/química , Quinolinas/química , Ácidos Sulfónicos/química
19.
Molecules ; 25(24)2020 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-33322179

RESUMEN

The selenophene derivatives are an important class of selenium-based heterocyclics. These compounds play an important role in prospecting new drugs, as well as in the development of new light-emitting materials. During the last years, several methods have been emerging to access the selenophene scaffold, employing a diversity of cyclization-based synthetic strategies, involving specific reaction partners and particularities. This review presents a comprehensive discussion on the recent advances in the synthesis of selenophene-based compounds, starting from different precursors, highlighting the main differences, the advantages, and limitations among them.


Asunto(s)
Técnicas de Química Sintética , Compuestos Heterocíclicos/síntesis química , Compuestos de Organoselenio/síntesis química , Técnicas de Química Sintética/métodos , Técnicas de Química Sintética/tendencias , Ciclización , Compuestos Heterocíclicos/química , Compuestos Heterocíclicos/farmacología , Estructura Molecular , Compuestos de Organoselenio/química , Compuestos de Organoselenio/farmacología
20.
Org Biomol Chem ; 18(27): 5210-5217, 2020 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-32602500

RESUMEN

Arylseleninic acids were used as an electrophilic selenium source in aromatic substitution reactions, using N,N-substituted anilines and indoles as nucleophiles at 70 °C for 6-15 h. A total of fourteen 4-selanylanilines and five 3-selanylindoles were selectively obtained in good to excellent yields. The starting benzeneseleninic acids are easily prepared from the respective diselenides, are bench stable and easy to handle, affording water as the only waste at the end of the reaction.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...