Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nano Lett ; 23(23): 10779-10787, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-37987745

RESUMEN

Electrochemical reduction of CO2 using Cu catalysts enables the synthesis of C2+ products including C2H4 and C2H5OH. In this study, Cu catalysts were fabricated using plasma-enhanced atomic layer deposition (PEALD), achieving conformal deposition of catalysts throughout 3-D gas diffusion electrode (GDE) substrates while maintaining tunable control of Cu nanoparticle size and areal loading. The electrochemical CO2 reduction at the Cu surface yielded a total Faradaic efficiency (FE) > 75% for C2+ products. Parasitic hydrogen evolution was minimized to a FE of ∼10%, and a selectivity of 42.2% FE for C2H4 was demonstrated. Compared to a line-of-sight physical vapor deposition method, PEALD Cu catalysts show significant suppression of C1 products compared to C2+, which is associated with improved control of catalyst morphology and conformality within the porous GDE substrate. Finally, PEALD Cu catalysts demonstrated a stable performance for 15 h with minimal reduction in the C2H4 production rate.

2.
Langmuir ; 38(38): 11641-11649, 2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-36095297

RESUMEN

Highly transparent photocatalytic self-cleaning surfaces capable of harvesting near-visible (365-430 nm) photons were synthesized and characterized. This helps to address a current research gap in self-cleaning surfaces, in which photocatalytic coatings that exhibit activity at wavelengths longer than ultraviolet (UV) generally have poor optical transparency, because of broadband scattering and the attenuation of visible light. In this work, the wavelength-dependent photocatalytic activity of Pt-modified TiO2 (Pt-TiO2) particles was characterized, which exhibited activity for wavelengths up to 430 nm. Pt-TiO2 nanoparticles were embedded in a mesoporous SiO2 sol-gel matrix, forming a superhydrophilic surface that allowed for water adsorption and formation of reactive oxide species upon illumination, resulting in the removal of organic surface contaminants. These self-cleaning surfaces only interact strongly with near-visible light (∼365-430 nm), as characterized by photocatalytic self-cleaning tests. Broadband visible transparency was preserved by generating a morphology composed of small clusters of Pt-TiO2 surrounded by a matrix of SiO2, which limited diffuse visible light scattering and attenuation. The wavelength-dependent self-cleaning rate by the films was quantified using stearic acid degradation under both monochromatic and AM1.5G spectral illumination. By varying the film morphology, the average transmittance relative to bare glass can be tuned from ∼93%-99%, and the self-cleaning rate can be adjusted by more than an order of magnitude. Overall, the ability to utilize photocatalysts with tunable visible light activity, while maintaining broadband transparency, can enable the use of photocatalytic self-cleaning surfaces for applications where UV illumination is limited, such as touchscreen displays.

3.
ACS Appl Mater Interfaces ; 14(27): 31099-31108, 2022 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-35786830

RESUMEN

We demonstrate tunable structural color patterns that span the visible spectrum using atomic layer deposition (ALD). Asymmetric metal-dielectric-metal structures were sequentially deposited with nickel, zinc oxide, and a thin copper layer to form an optical cavity. The color response was precisely adjusted by tuning the zinc oxide (ZnO) thickness using ALD, which was consistent with model predictions. Owing to the conformal nature of ALD, this allows for uniform and tunable coloration of non-planar three-dimensional (3D) objects, as exemplified by adding color to 3D-printed parts produced by metal additive manufacturing. Proper choice of inorganic layered structures and materials allows the structural color to be stable at elevated temperatures, in contrast to traditional paints. To print multiple colors on a single sample, polymer inhibitors were patterned in a desired geometry using electrohydrodynamic jet (e-jet) printing, followed by area-selective ALD in the unpassivated regions. The ability to achieve 3D color printing, both at the micro- and macroscales, provides a new pathway to tune the optical and aesthetic properties during additive manufacturing.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...