Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
mSphere ; 9(5): e0006024, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38647313

RESUMEN

Enterobacter cloacae is an emerging pathogen isolated in healthcare-associated infections. A major virulence factor of this bacterium is the type VI secretion system (T6SS). The genome of E. cloacae harbors two T6SS gene clusters (T6SS-1 and T6SS-2), and the functional characterization of both systems showed that these two T6SSs are not expressed under the same conditions. Here, we report that the major histone-like protein HU positively regulates the expression of both T6SSs and, therefore, the function that each T6SS exerts in E. cloacae. Single deletions of the genes encoding the HU subunits (hupA and hupB) decreased mRNA levels of both T6SS. In contrast, the hupA hupB double mutant dramatically affected the T6SS expression, diminishing its transcription. The direct binding of HU to the promoter regions of T6SS-1 and T6SS-2 was confirmed by electrophoretic mobility shift assay. In addition, single and double mutations in the hup genes affected the ability of inter-bacterial killing, biofilm formation, adherence to epithelial cells, and intestinal colonization, but these phenotypes were restored when such mutants were trans-complemented. Our data broaden our understanding of the regulation of HU-mediated T6SS in these pathogenic bacteria. IMPORTANCE: T6SS is a nanomachine that functions as a weapon of bacterial destruction crucial for successful colonization in a specific niche. Enterobacter cloacae expresses two T6SSs required for bacterial competition, adherence, biofilm formation, and intestinal colonization. Expression of T6SS genes in pathogenic bacteria is controlled by multiple regulatory systems, including two-component systems, global regulators, and nucleoid proteins. Here, we reported that the HU nucleoid protein directly activates both T6SSs in E. cloacae, affecting the T6SS-related phenotypes. Our data describe HU as a new regulator involved in the transcriptional regulation of T6SS and its impact on E. cloacae pathogenesis.


Asunto(s)
Proteínas Bacterianas , Proteínas de Unión al ADN , Enterobacter cloacae , Regulación Bacteriana de la Expresión Génica , Sistemas de Secreción Tipo VI , Enterobacter cloacae/genética , Enterobacter cloacae/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sistemas de Secreción Tipo VI/genética , Sistemas de Secreción Tipo VI/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Regiones Promotoras Genéticas , Familia de Multigenes
2.
J Biol Chem ; 299(12): 105439, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37944619

RESUMEN

Macromolecular crowding, manifested by high concentrations of proteins and nucleic acids in living cells, significantly influences biological processes such as enzymatic reactions. Studying these reactions in vitro, using agents such as polyetthylene glycols (PEGs) and polyvinyl alcohols (PVAs) to mimic intracellular crowding conditions, is essential due to the notable differences from enzyme behaviors observed in diluted aqueous solutions. In this article, we studied Mycobacterium tuberculosis (Mtb) DNA gyrase under macromolecular crowding conditions by incorporating PEGs and PVAs into the DNA supercoiling reactions. We discovered that high concentrations of potassium glutamate, glycine betaine, PEGs, and PVA substantially stimulated the DNA supercoiling activity of Mtb DNA gyrase. Steady-state kinetic studies showed that glycine betaine and PEG400 significantly reduced the KM of Mtb DNA gyrase and simultaneously increased the Vmax or kcat of Mtb DNA gyrase for ATP and the plasmid DNA molecule. Molecular dynamics simulation studies demonstrated that PEG molecules kept the ATP lid of DNA gyrase subunit B in a closed or semiclosed conformation, which prevented ATP molecules from leaving the ATP-binding pocket of DNA gyrase subunit B. The stimulation of the DNA supercoiling activity of Mtb DNA gyrase by these molecular crowding agents likely results from a decrease in water activity and an increase in excluded volume.


Asunto(s)
Girasa de ADN , Mycobacterium tuberculosis , Girasa de ADN/metabolismo , Mycobacterium tuberculosis/metabolismo , Betaína , Cinética , Adenosina Trifosfato/metabolismo , ADN , ADN Superhelicoidal
3.
J Am Chem Soc ; 145(51): 28075-28084, 2023 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-37996390

RESUMEN

Glass nanopipettes have gained widespread use as a versatile single-entity detector in chemical and biological sensing, analysis, and imaging. Its advantages include low cost, easy accessibility, simplicity of use, and high versatility. However, conventional nanopipettes based on the volume exclusion mechanism have limitations in detecting small biomolecules due to their small volume and high mobility in aqueous solution. To overcome this challenge, we have employed a novel approach by capitalizing on the strong nanoconfinement effect of nanopipettes. This is achieved by utilizing both the hard confinement provided by the long taper nanopipette tip at the cis side and the soft confinement offered by the hydrogel at the trans side. Through this approach, we have effectively slowed down the exit motion of small molecules, allowing us to enrich and jam them at the nanopipette tip. Consequently, we have achieved high throughput detection of small biomolecules with sizes as small as 1 nm, including nucleoside triphosphates, short peptides, and small proteins with excellent signal-to-noise ratios. Furthermore, molecular complex formation through specific intermolecular interactions, such as hydrogen bonding between closely spaced nucleotides in the jam-packed nanopipette tip, has been detected based on the unique ionic current changes.


Asunto(s)
Nanotecnología , Proteínas , Nanotecnología/métodos , Péptidos , Vidrio
4.
bioRxiv ; 2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37904923

RESUMEN

Fluoroquinolones (FQs) are potent antibiotics of clinical significance, known for their unique mechanism of action as gyrase poisons, which stabilize gyrase-DNA cleavage complexes and convert gyrase into a DNA-damaging machinery. Unfortunately, FQ resistance has emerged, and these antibiotics can cause severe side effects. Therefore, discovering novel gyrase poisons with different chemical scaffolds is essential. The challenge lies in efficiently identifying them from compound libraries containing thousands or millions of drug-like compounds, as high-throughput screening (HTS) assays are currently unavailable. Here we report a novel fluorescence-based, T5 exonuclease-amplified DNA cleavage assay for gyrase poison discovery. This assay capitalizes on recent findings showing that multiple gyrase molecules can simultaneously bind to a plasmid DNA molecule, forming multiple gyrase-DNA cleavage complexes on the same plasmid. These gyrase-DNA cleavage complexes, stabilized by a gyrase poison, can be captured using sarkosyl. Proteinase K digestion results in producing small DNA fragments. T5 exonuclease, selectively digesting linear and nicked DNA, can fully digest the fragmented linear DNA molecules and, thus, "amplify" the decrease in fluorescence signal of the DNA cleavage products after SYBR Green staining. This fluorescence-based, T5 exonuclease-amplified DNA cleavage HTS assay is validated using a 50-compound library, making it suitable for screening large compound libraries.

5.
Bioorg Med Chem Lett ; 93: 129439, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37557925

RESUMEN

Polyheterocycles are one of the most desired synthetic targets due to their numerous and valuable applications in various fields. We report the design and the parallel synthesis of novel linear oligocyclic guanidine peptidomimetics from predesigned reduced polyamides. A screening of these compounds identified active Mycobacterium tuberculosis DNA gyrase inhibitors which do not inhibit human DNA topoisomerase IIα and topoisomerase I.


Asunto(s)
Mycobacterium tuberculosis , Peptidomiméticos , Tuberculosis , Humanos , Girasa de ADN , Peptidomiméticos/farmacología , Peptidomiméticos/uso terapéutico , Guanidinas , Técnicas de Síntesis en Fase Sólida , Tuberculosis/tratamiento farmacológico , Inhibidores de Topoisomerasa II/farmacología , Inhibidores de Topoisomerasa II/uso terapéutico , Guanidina
6.
Chem Res Toxicol ; 36(4): 660-668, 2023 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-37000908

RESUMEN

Here, we reported a spontaneous reaction between anticancer drug doxorubicin and GTP or dGTP. Incubation of doxorubicin with GTP or dGTP at 37 °C or above yields a covalent product: the doxorubicin-GTP or -dGTP conjugate where a covalent bond is formed between the C14 position of doxorubicin and the 2-amino group of guanine. Density functional theory calculations show the feasibility of this spontaneous reaction. Fluorescence imaging studies demonstrate that the doxorubicin-GTP and -dGTP conjugates cannot enter nuclei although they rapidly accumulate in human SK-OV-3 and NCI/ADR-RES cells. Consequently, the doxorubicin-GTP and -dGTP conjugates are less cytotoxic than doxorubicin. We also demonstrate that doxorubicin binds to ATP, GTP, and other nucleotides with a dissociation constant (Kd) in the sub-millimolar range. Since human cells contain millimolar levels of ATP and GTP, these results suggest that doxorubicin may target ATP and GTP, energy molecules that support essential processes in living organisms.


Asunto(s)
Antineoplásicos , Humanos , Antineoplásicos/farmacología , Doxorrubicina/farmacología , Nucleótidos de Desoxiguanina/metabolismo , Guanosina Trifosfato/metabolismo , Adenosina Trifosfato
7.
ACS Pharmacol Transl Sci ; 5(10): 932-944, 2022 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-36268121

RESUMEN

Bacterial DNA gyrase, a type IIA DNA topoisomerase that plays an essential role in bacterial DNA replication and transcription, is a clinically validated target for discovering and developing new antibiotics. In this article, based on a supercoiling-dependent fluorescence quenching (SDFQ) method, we developed a high-throughput screening (HTS) assay to identify inhibitors targeting bacterial DNA gyrase and screened the National Institutes of Health's Molecular Libraries Small Molecule Repository library containing 370,620 compounds in which 2891 potential gyrase inhibitors have been identified. According to these screening results, we acquired 235 compounds to analyze their inhibition activities against bacterial DNA gyrase using gel- and SDFQ-based DNA gyrase inhibition assays and discovered 155 new bacterial DNA gyrase inhibitors with a wide structural diversity. Several of them have potent antibacterial activities. These newly discovered gyrase inhibitors include several DNA gyrase poisons that stabilize the gyrase-DNA cleavage complexes and provide new chemical scaffolds for the design and synthesis of bacterial DNA gyrase inhibitors that may be used to combat multidrug-resistant bacterial pathogens. Additionally, this HTS assay can be applied to screen inhibitors against other DNA topoisomerases.

8.
ChemMedChem ; 17(23): e202200301, 2022 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-36161274

RESUMEN

Bacterial DNA gyrase, an essential enzyme, is a validated target for discovering and developing new antibiotics. Here we screened a pool of polyphenols and discovered that digallic acid is a potent DNA gyrase inhibitor. We also found that several food additives based on gallate, such as dodecyl gallate, potently inhibit bacterial DNA gyrase. Interestingly, the IC50 of these gallate derivatives against DNA gyrase is correlated with the length of hydrocarbon chain connecting to the gallate. These new bacterial DNA gyrase inhibitors are ATP competitive inhibitors of DNA gyrase. Our results also show that digallic acid and certain gallate derivatives potently inhibit E. coli DNA topoisomerase IV. Several gallate derivatives have strong antimicrobial activities against Staphylococcus aureus and methicillin-resistant Staphylococcus aureus (MRSA). This study provides a solid foundation for the design and synthesis of gallate-based DNA gyrase inhibitors that may be used to combat antibacterial resistance.


Asunto(s)
Girasa de ADN , Staphylococcus aureus Resistente a Meticilina , ADN Bacteriano , Inhibidores de Topoisomerasa II/farmacología , Escherichia coli
9.
J Am Soc Mass Spectrom ; 33(7): 1103-1112, 2022 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-35687119

RESUMEN

The mammalian high mobility group protein AT-hook 2 (HMGA2) is an intrinsically disordered DNA-binding protein expressed during embryogenesis. In the present work, the conformational and binding dynamics of HMGA2 and HMGA2 in complex with a 22-nt (DNA22) and a 50-nt (DNA50) AT-rich DNA hairpin were investigated using trapped ion mobility spectrometry-mass spectrometry (TIMS-MS) under native starting solvent conditions (e.g., 100 mM aqueous NH4Ac) and collision-induced unfolding/dissociation (CIU/CID) as well as solution fluorescence anisotropy to assess the role of the DNA ligand when binding to the HMGA2 protein. CIU-TIMS-CID-MS/MS experiments showed a significant reduction of the conformational space and charge-state distribution accompanied by an energy stability increase of the native HMGA2 upon DNA binding. Fluorescence anisotropy experiments and CIU-TIMS-CID-MS/MS demonstrated for the first time that HMGA2 binds with high affinity to the minor groove of AT-rich DNA oligomers and with lower affinity to the major groove of AT-rich DNA oligomers (minor groove occupied by a minor groove binder Hoechst 33258). The HMGA2·DNA22 complex (18.2 kDa) 1:1 and 1:2 stoichiometry suggests that two of the AT-hook sites are accessible for DNA binding, while the other AT-hook site is probably coordinated by the C-terminal motif peptide (CTMP). The HMGA2 transition from disordered to ordered upon DNA binding is driven by the interaction of the three basic AT-hook residues with the minor and/or major grooves of AT-rich DNA oligomers.


Asunto(s)
Proteína HMGA2 , Espectrometría de Movilidad Iónica , Animales , ADN/química , Proteína HMGA2/química , Proteína HMGA2/metabolismo , Mamíferos/genética , Mamíferos/metabolismo , Espectrometría de Masas en Tándem
10.
J Am Soc Mass Spectrom ; 33(7): 1092-1102, 2022 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-35687872

RESUMEN

Although it is widely accepted that protein function is largely dependent on its structure, intrinsically disordered proteins (IDPs) lack defined structure but are essential in proper cellular processes. Mammalian high mobility group proteins (HMGA) are one such example of IDPs that perform a number of crucial nuclear activities and have been highly studied due to their involvement in the proliferation of a variety of disease and cancers. Traditional structural characterization methods have had limited success in understanding HMGA proteins and their ability to coordinate to DNA. Ion mobility spectrometry and mass spectrometry provide insights into the diversity and heterogeneity of structures adopted by IDPs and are employed here to interrogate HMGA2 in its unbound states and bound to two DNA hairpins. The broad distribution of collision cross sections observed for the apo-protein are restricted when HMGA2 is bound to DNA, suggesting that increased protein organization is promoted in the holo-form. Ultraviolet photodissociation was utilized to probe the changes in structures for the compact and elongated structures of HMGA2 by analyzing backbone cleavage propensities and solvent accessibility based on charge-site analysis, which revealed a spectrum of conformational possibilities. Namely, preferential binding of the DNA hairpins with the second of three AT-hooks of HMGA2 is suggested based on the suppression of backbone fragmentation and distribution of DNA-containing protein fragments.


Asunto(s)
Proteínas Intrínsecamente Desordenadas , Espectrometría de Movilidad Iónica , Animales , ADN/química , Proteínas Intrínsecamente Desordenadas/química , Mamíferos , Espectrometría de Masas , Conformación Molecular
11.
Nucleic Acids Res ; 50(5): 2431-2439, 2022 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-35212375

RESUMEN

The mammalian high mobility group protein AT-hook 2 (HMGA2) houses three motifs that preferentially bind short stretches of AT-rich DNA regions. These DNA binding motifs, known as 'AT-hooks', are traditionally characterized as being unstructured. Upon binding to AT-rich DNA, they form ordered assemblies. It is this disordered-to-ordered transition that has implicated HMGA2 as a protein actively involved in many biological processes, with abnormal HMGA expression linked to a variety of health problems including diabetes, obesity, and oncogenesis. In the current work, the solution binding dynamics of the three 'AT-hook' peptides (ATHPs) with AT-rich DNA hairpin substrates were studied using DNA UV melting studies, fluorescence spectroscopy, native ion mobility spectrometry-mass spectrometry (IMS-MS), solution isothermal titration calorimetry (ITC) and molecular modeling. Results showed that the ATHPs bind to the DNA to form a single, 1:1 and 2:1, 'key-locked' conformational ensemble. The molecular models showed that 1:1 and 2:1 complex formation is driven by the capacity of the ATHPs to bind to the minor and major grooves of the AT-rich DNA oligomers. Complementary solution ITC results confirmed that the 2:1 stoichiometry of ATHP: DNA is originated under native conditions in solution.


Asunto(s)
Secuencias AT-Hook , ADN , Animales , ADN/química , Proteínas del Grupo de Alta Movilidad/metabolismo , Mamíferos/genética , Desnaturalización de Ácido Nucleico , Péptidos/genética
12.
ACS Sens ; 7(2): 555-563, 2022 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-35060380

RESUMEN

Label-free detection and analysis of proteins in their natural form and their dynamic interactions with substrates at the single-molecule level are important for both fundamental studies and various applications. Herein, we demonstrate a simple potentiometric method to achieve this goal by detecting the native charge of protein in solution by utilizing the principle of single-entity electrochemistry techniques. When a charged protein moves near the vicinity of a floating carbon nanoelectrode connected to a high-impedance voltage meter, the distinct local electrostatic potential changes induced by the transient collision event of protein, also called the "nanoimpact" event, can be captured by the nanoelectrode as a potential probe. This potentiometric method is highly sensitive for charged proteins, and low-molecular-weight proteins less than 10 kDa can be detected in low-salt-concentration electrolytes. By analyzing the shape and magnitude of the recorded time-resolved potential change and its time derivative, we can reveal the charge and motion of the protein in the nonspecific protein-surface interaction event. The charge polarity variations of the proteins at different pH values were also successfully probed. Compared with synthetic spherical nanoparticles, the statistical analysis of many single-molecule nanoimpact events revealed a large variation in the recorded transient potential signals, which may be attributed to the intrinsic protein dynamics and surface charge heterogeneity, as suggested by the finite element method and molecular dynamic simulations.


Asunto(s)
Nanopartículas , Proteínas , Electroquímica , Nanotecnología , Proteínas/química , Electricidad Estática
13.
Nucleic Acids Res ; 49(20): 11550-11559, 2021 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-34723343

RESUMEN

Protein-mediated DNA looping is fundamental to gene regulation and such loops occur stochastically in purified systems. Additional proteins increase the probability of looping, but these probabilities maintain a broad distribution. For example, the probability of lac repressor-mediated looping in individual molecules ranged 0-100%, and individual molecules exhibited representative behavior only in observations lasting an hour or more. Titrating with HU protein progressively compacted the DNA without narrowing the 0-100% distribution. Increased negative supercoiling produced an ensemble of molecules in which all individual molecules more closely resembled the average. Furthermore, in only 12 min of observation, well within the doubling time of the bacterium, most molecules exhibited the looping probability of the ensemble. DNA supercoiling, an inherent feature of all genomes, appears to impose time-constrained, emergent behavior on otherwise random molecular activity.


Asunto(s)
ADN Superhelicoidal/química , Proteínas de Unión al ADN/metabolismo , Proteínas de Escherichia coli/metabolismo , División Celular , ADN Superhelicoidal/genética , ADN Superhelicoidal/metabolismo , Proteínas de Unión al ADN/química , Escherichia coli , Proteínas de Escherichia coli/química , Conformación de Ácido Nucleico , Unión Proteica
14.
ACS Omega ; 6(18): 12205-12212, 2021 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-34056374

RESUMEN

DNA topoisomerases, essential enzymes to all living organisms, are important targets of certain antibiotics and anticancer drugs. Although efforts have been taken to identify new inhibitors targeting DNA topoisomerases, limited high throughput screening (HTS) studies have been conducted since a widely accessible HTS assay is not available. We report here the establishment of a fluorescence-based, low-cost HTS assay to identify topoisomerase inhibitors. This HTS assay is based on a unique property of T5 exonuclease that can completely digest supercoiled plasmid pAB1 containing an "AT" hairpin structure and spare relaxed pAB1 and has been validated by screening a small library that contains 50 compounds for various topoisomerases. This T5 exonuclease-based HTS assay can also be used to identify DNA intercalators, the major false positives for identifying topoisomerase inhibitors using this HTS assay. Additionally, we found a new compound that potently inhibits human and bacterial DNA topoisomerase I.

15.
Anal Chem ; 93(5): 2933-2941, 2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33492949

RESUMEN

The structural elucidation of native macromolecular assemblies has been a subject of considerable interest in native mass spectrometry (MS), and more recently in tandem with ion mobility spectrometry (IMS-MS), for a better understanding of their biochemical and biophysical functions. In the present work, we describe a new generation trapped ion mobility spectrometer (TIMS), with extended mobility range (K0 = 0.185-1.84 cm2·V-1·s-1), capable of trapping high-molecular-weight (MW) macromolecular assemblies. This compact 4 cm long TIMS analyzer utilizes a convex electrode, quadrupolar geometry with increased pseudopotential penetration in the radial dimension, extending the mobility trapping to high-MW species under native state (i.e., lower charge states). The TIMS capabilities to perform variable scan rate (Sr) mobility measurements over short time (100-500 ms), high-mobility resolution, and ion-neutral collision cross-section (CCSN2) measurements are presented. The trapping capabilities of the convex electrode TIMS geometry and ease of operation over a wide gas flow, rf range, and electric field trapping range are illustrated for the first time using a comprehensive list of standards varying from CsI clusters (n = 6-73), Tuning Mix oligomers (n = 1-5), common proteins (e.g., ubiquitin, cytochrome C, lysozyme, concanavalin (n = 1-4), carbonic anhydrase, ß clamp (n = 1-4), topoisomerase IB, bovine serum albumin (n = 1-3), topoisomerase IA, alcohol dehydrogenase), IgG antibody (e.g., avastin), protein-DNA complexes, and macromolecular assemblies (e.g., GroEL and RNA polymerase (n = 1-2)) covering a wide mass (up to m/z 19 000) and CCS range (up to 22 000 Å2 with <0.6% relative standard deviation (RSD)).


Asunto(s)
Espectrometría de Movilidad Iónica , Proteínas , Iones , Espectrometría de Masas , Ubiquitina
16.
Sci Rep ; 10(1): 18850, 2020 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-33139812

RESUMEN

The mammalian high mobility group protein AT-hook 2 (HMGA2) is a multi-functional DNA-binding protein that plays important roles in tumorigenesis and adipogenesis. Previous results showed that HMGA2 is a potential therapeutic target of anticancer and anti-obesity drugs by inhibiting its DNA-binding activities. Here we report the development of a miniaturized, automated AlphaScreen ultra-high-throughput screening assay to identify inhibitors targeting HMGA2-DNA interactions. After screening the LOPAC1280 compound library, we identified several compounds that strongly inhibit HMGA2-DNA interactions including suramin, a century-old, negatively charged antiparasitic drug. Our results show that the inhibition is likely through suramin binding to the "AT-hook" DNA-binding motifs and therefore preventing HMGA2 from binding to the minor groove of AT-rich DNA sequences. Since HMGA1 proteins also carry multiple "AT-hook" DNA-binding motifs, suramin is expected to inhibit HMGA1-DNA interactions as well. Biochemical and biophysical studies show that charge-charge interactions and hydrogen bonding between the suramin sulfonated groups and Arg/Lys residues play critical roles in the binding of suramin to the "AT-hook" DNA-binding motifs. Furthermore, our results suggest that HMGA2 may be one of suramin's cellular targets.


Asunto(s)
Proteínas de Unión al ADN/antagonistas & inhibidores , Proteína HMGA1a/antagonistas & inhibidores , Proteína HMGA2/antagonistas & inhibidores , Suramina/química , Adipogénesis/efectos de los fármacos , Secuencias de Aminoácidos/efectos de los fármacos , Secuencia de Bases/efectos de los fármacos , Sitios de Unión/efectos de los fármacos , Carcinogénesis/efectos de los fármacos , ADN/efectos de los fármacos , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Proteína HMGA1a/química , Proteína HMGA1a/genética , Proteína HMGA2/química , Proteína HMGA2/genética , Ensayos Analíticos de Alto Rendimiento , Humanos , Suramina/aislamiento & purificación , Suramina/farmacología
17.
J Biol Chem ; 295(40): 13902-13913, 2020 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-32763971

RESUMEN

Trinucleotide repeat (TNR) expansion and deletion are responsible for over 40 neurodegenerative diseases and associated with cancer. TNRs can undergo somatic instability that is mediated by DNA damage and repair and gene transcription. Recent studies have pointed toward a role for R-loops in causing TNR expansion and deletion, and it has been shown that base excision repair (BER) can result in CAG repeat deletion from R-loops in yeast. However, it remains unknown how BER in R-loops can mediate TNR instability. In this study, using biochemical approaches, we examined BER enzymatic activities and their influence on TNR R-loops. We found that AP endonuclease 1 incised an abasic site on the nontemplate strand of a TNR R-loop, creating a double-flap intermediate containing an RNA:DNA hybrid that subsequently inhibited polymerase ß (pol ß) synthesis of TNRs. This stimulated flap endonuclease 1 (FEN1) cleavage of TNRs engaged in an R-loop. Moreover, we showed that FEN1 also efficiently cleaved the RNA strand, facilitating pol ß loop/hairpin bypass synthesis and the resolution of TNR R-loops through BER. Consequently, this resulted in fewer TNRs synthesized by pol ß than those removed by FEN1, thereby leading to repeat deletion. Our results indicate that TNR R-loops preferentially lead to repeat deletion during BER by disrupting the balance between the addition and removal of TNRs. Our discoveries open a new avenue for the treatment and prevention of repeat expansion diseases and cancer.


Asunto(s)
ADN Polimerasa beta/química , Reparación del ADN , ADN-(Sitio Apurínico o Apirimidínico) Liasa/química , Endonucleasas de ADN Solapado/química , Estructuras R-Loop , Repeticiones de Trinucleótidos , Humanos
18.
Int J Mol Sci ; 21(10)2020 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-32466162

RESUMEN

The mammalian high-mobility-group protein AT-hook 2 (HMGA2) is a small DNA-binding protein and consists of three "AT-hook" DNA-binding motifs and a negatively charged C-terminal motif. It is a multifunctional nuclear protein directly linked to obesity, human height, stem cell youth, human intelligence, and tumorigenesis. Biochemical and biophysical studies showed that HMGA2 is an intrinsically disordered protein (IDP) and could form homodimers in aqueous buffer solution. The "AT-hook" DNA-binding motifs specifically bind to the minor groove of AT-rich DNA sequences and induce DNA-bending. HMGA2 plays an important role in adipogenesis most likely through stimulating the proliferative expansion of preadipocytes and also through regulating the expression of transcriptional factor Peroxisome proliferator-activated receptor γ (PPARγ) at the clonal expansion step from preadipocytes to adipocytes. Current evidence suggests that a main function of HMGA2 is to maintain stemness and renewal capacity of stem cells by which HMGA2 binds to chromosome and lock chromosome into a specific state, to allow the human embryonic stem cells to maintain their stem cell potency. Due to the importance of HMGA2 in adipogenesis and tumorigenesis, HMGA2 is considered a potential therapeutic target for anticancer and anti-obesity drugs. Efforts are taken to identify inhibitors targeting HMGA2.


Asunto(s)
Adipogénesis , Proteína HMGA2/química , Animales , Proteína HMGA2/metabolismo , Humanos , Unión Proteica , Dominios Proteicos
19.
FEBS Lett ; 594(5): 791-798, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31639222

RESUMEN

Previously, we demonstrated that transcription-coupled DNA supercoiling (TCDS) potently activated or inhibited nearby promoters in Escherichia coli even in the presence of all four DNA topoisomerases, suggesting that DNA topoisomerases are not the only factors regulating TCDS. A different mechanism exists to confine this localized DNA supercoiling. Using an in vivo system containing the TCDS-activated leu-500 promoter (Pleu-500 ), we find that the nucleoid-associated Fis protein potently inhibits the TCDS-mediated activation of Pleu-500 . We also find that deletion of the fis gene significantly enhances TCDS-mediated inhibition of transcription of three genes purH, yieP, and yrdA divergently coupled to different rrn operons in the early log phase. These results suggest that Fis protein forms DNA topological barriers upon binding to its recognition sites, blocks TCDS diffusion, and potently inhibits the TCDS-activated Pleu-500 .


Asunto(s)
ADN Superhelicoidal/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Factor Proteico para Inverción de Estimulación/metabolismo , Regiones Promotoras Genéticas , ADN Bacteriano/química , ADN Bacteriano/metabolismo , ADN Superhelicoidal/química , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Factor Proteico para Inverción de Estimulación/genética , Eliminación de Gen , Regulación Bacteriana de la Expresión Génica , Conformación de Ácido Nucleico , Factores de Transcripción/genética , Transcripción Genética
20.
ACS Omega ; 4(19): 18413-18422, 2019 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-31720544

RESUMEN

DNA topoisomerases are essential enzymes for all living organisms and important targets for anticancer drugs and antibiotics. Although DNA topoisomerases have been studied extensively, steady-state kinetics has not been systematically investigated because of the lack of an appropriate assay. Previously, we demonstrated that newly synthesized, fluorescently labeled plasmids pAB1_FL905 and pAB1_FL924 can be used to study DNA topoisomerase-catalyzed reactions by fluorescence resonance energy transfer (FRET) or supercoiling-dependent fluorescence quenching (SDFQ). With the FRET or SDFQ method, we performed steady-state kinetic studies for six different DNA topoisomerases including two type IA enzymes (Escherichia coli and Mycobacterium smegmatis DNA topoisomerase I), two type IB enzymes (human and variola DNA topoisomerase I), and two type IIA enzymes (E. coli DNA gyrase and human DNA topoisomerase IIα). Our results show that all DNA topoisomerases follow the classical Michaelis-Menten kinetics and have unique steady-state kinetic parameters, K M, V max, and k cat. We found that k cat for all topoisomerases are rather low and that such low values may stem from the tight binding of topoisomerases to DNA. Additionally, we confirmed that novobiocin is a competitive inhibitor for adenosine 5'-triphosphate binding to E. coli DNA gyrase, demonstrating the utility of our assay for studying topoisomerase inhibitors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...