Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Biometeorol ; 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38656350

RESUMEN

The decision to establish a network of researchers centers on identifying shared research goals. Ecologically specific regions, such as the USA's National Ecological Observatory Network's (NEON's) eco-climatic domains, are ideal locations by which to assemble researchers with a diverse range of expertise but focused on the same set of ecological challenges. The recently established Great Lakes User Group (GLUG) is NEON's first domain specific ensemble of researchers, whose goal is to address scientific and technical issues specific to the Great Lakes Domain 5 (D05) by using NEON data to enable advancement of ecosystem science. Here, we report on GLUG's kick off workshop, which comprised lightning talks, keynote presentations, breakout brainstorming sessions and field site visits. Together, these activities created an environment to foster and strengthen GLUG and NEON user engagement. The tangible outcomes of the workshop exceeded initial expectations and include plans for (i) two journal articles (in addition to this one), (ii) two potential funding proposals, (iii) an assignable assets request and (iv) development of classroom activities using NEON datasets. The success of this 2.5-day event was due to a combination of factors, including establishment of clear objectives, adopting engaging activities and providing opportunities for active participation and inclusive collaboration with diverse participants. Given the success of this approach we encourage others, wanting to organize similar groups of researchers, to adopt the workshop framework presented here which will strengthen existing collaborations and foster new ones, together with raising greater awareness and promotion of use of NEON datasets. Establishing domain specific user groups will help bridge the scale gap between site level data collection and addressing regional and larger ecological challenges.

2.
Environ Monit Assess ; 191(9): 548, 2019 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-31392422

RESUMEN

Global warming portends an accelerated water cycle as increased evaporation feeds atmospheric moisture and precipitation. To monitor effects on surface water levels, we describe a low-cost hydrologic observatory suitable for small to medium size lakes. The observatory comprises sensor platforms that were built in-house to compile continuous, sub-daily water budgets. The variables measured directly are lake stage (S), evaporation (E), and precipitation (P). A net inflow term (Qnet) is estimated as a residual in the continuity equation: ∆S = P - E + Qnet. We describe how to build in-lake stilling wells and floating evaporation pans using readily available materials. We assess their performance in laboratory tests and field trials. A 3-month deployment on a small Wisconsin lake (18 ha, 10 m deep) confirms that continuous estimates of ∆S, E, P, and Qnet can be made with good precision and accuracy at hourly time scales. During that deployment, daily estimates of E from the floating evaporation pans were comparable with estimates made using the more data-intensive Bowen ratio energy balance method and a mass transfer model. Since small lakes are numerically dominant and widely distributed across the globe, a network of hydrologic observatories would enable the calibration and validation of climate models and consumptive use policies at local and regional scales. And since the observatories are inexpensive and relatively simple to maintain, citizen scientists could facilitate the expansion of spatial coverage with minimal training.


Asunto(s)
Monitoreo del Ambiente/métodos , Hidrología/métodos , Lagos/análisis , Clima , Calentamiento Global , Ciclo Hidrológico , Wisconsin
3.
Sci Data ; 2: 150008, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25977814

RESUMEN

Global environmental change has influenced lake surface temperatures, a key driver of ecosystem structure and function. Recent studies have suggested significant warming of water temperatures in individual lakes across many different regions around the world. However, the spatial and temporal coherence associated with the magnitude of these trends remains unclear. Thus, a global data set of water temperature is required to understand and synthesize global, long-term trends in surface water temperatures of inland bodies of water. We assembled a database of summer lake surface temperatures for 291 lakes collected in situ and/or by satellites for the period 1985-2009. In addition, corresponding climatic drivers (air temperatures, solar radiation, and cloud cover) and geomorphometric characteristics (latitude, longitude, elevation, lake surface area, maximum depth, mean depth, and volume) that influence lake surface temperatures were compiled for each lake. This unique dataset offers an invaluable baseline perspective on global-scale lake thermal conditions as environmental change continues.

4.
PLoS One ; 8(7): e68847, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23844244

RESUMEN

Miscanthus is an intriguing cellulosic bioenergy feedstock because its aboveground productivity is high for low amounts of agrochemical inputs, but soil temperatures below -3.5 °C could threaten successful cultivation in temperate regions. We used a combination of observed soil temperatures and the Agro-IBIS model to investigate how strategic residue management could reduce the risk of rhizome threatening soil temperatures. This objective was addressed using a historical (1978-2007) reconstruction of extreme minimum 10 cm soil temperatures experienced across the Midwest US and model sensitivity studies that quantified the impact of crop residue on soil temperatures. At observation sites and for simulations that had bare soil, two critical soil temperature thresholds (50% rhizome winterkill at -3.5 °C and -6.0 °C for different Miscanthus genotypes) were reached at rhizome planting depth (10 cm) over large geographic areas. The coldest average annual extreme 10 cm soil temperatures were between -8 °C to -11 °C across North Dakota, South Dakota, and Minnesota. Large portions of the region experienced 10 cm soil temperatures below -3.5 °C in 75% or greater for all years, and portions of North and South Dakota, Minnesota, and Wisconsin experienced soil temperatures below -6.0 °C in 50-60% of all years. For simulated management options that established varied thicknesses (1-5 cm) of miscanthus straw following harvest, extreme minimum soil temperatures increased by 2.5 °C to 6 °C compared to bare soil, with the greatest warming associated with thicker residue layers. While the likelihood of 10 cm soil temperatures reaching -3.5 °C was greatly reduced with 2-5 cm of surface residue, portions of the Dakotas, Nebraska, Minnesota, and Wisconsin still experienced temperatures colder than -3.5 °C in 50-80% of all years. Nonetheless, strategic residue management could help increase the likelihood of overwintering of miscanthus rhizomes in the first few years after establishment, although low productivity and biomass availability during these early stages could hamper such efforts.


Asunto(s)
Frío , Estaciones del Año , Agricultura , Simulación por Computador , Ecosistema , Sistemas de Información Geográfica , Medio Oeste de Estados Unidos , Modelos Teóricos , Poaceae/crecimiento & desarrollo , Reproducibilidad de los Resultados , Nieve , Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...