Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Appl Microbiol Biotechnol ; 108(1): 295, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38598118

RESUMEN

A "redox-stat" RMnR bioreactor was employed to simulate moderately reducing conditions (+ 420 mV) in Sb-contaminated shooting range soils for approximately 3 months, thermodynamically favoring Mn(IV) reduction. The impact of moderately reducing conditions on elemental mobilization (Mn, Sb, Fe) and speciation [Sb(III) versus Sb(V); Fe2+/Fe3+] was compared to a control bioreactor RCTRL without a fixed redox potential. In both bioreactors, reducing conditions were accompanied by an increase in effluent Sb(V) and Mn(II) concentrations, suggesting that Sb(V) was released through microbial reduction of Mn oxyhydroxide minerals. This was underlined by multiple linear regression analysis showing a significant (p < 0.05) relationship between Mn and Sb effluent concentrations. Mn concentration was the sole variable exhibiting a statistically significant effect on Sb in RMnR, while under the more reducing conditions in RCTRL, pH and redox potential were also significant. Analysis of the bacterial community composition revealed an increase in the genera Azoarcus, Flavisolibacter, Luteimonas, and Mesorhizobium concerning the initial soil, some of which are possible key players in the process of Sb mobilization. The overall amount of Sb released in the RMnR (10.40%) was virtually the same as in the RCTRL (10.37%), which underlines a subordinate role of anoxic processes, such as Fe-reductive dissolution, in Sb mobilization. This research underscores the central role of relatively low concentrations of Mn oxyhydroxides in influencing the fate of trace elements. Our study also demonstrates that bioreactors operated as redox-stats represent versatile tools that allow quantifying the contribution of specific mechanisms determining the fate of trace elements in contaminated soils. KEY POINTS: • "Redox-stat" reactors elucidate Sb mobilization mechanisms • Mn oxyhydroxides microbial reductive dissolution has a major role in Sb mobilization in soils under moderately reducing conditions • Despite aging the soil exhibited significant Sb mobilization potential, emphasizing persistent environmental effects.


Asunto(s)
Manganeso , Oligoelementos , Bacteroidetes , Suelo
2.
Chemosphere ; 345: 140548, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37890793

RESUMEN

Selenium deficiency affects many million people worldwide and volatilization of biogenically methylated selenium species to the atmosphere may limit Se entering the food chain. However, there is very little systematic data on volatilization at nanomolar concentrations prevalent in pristine natural environments. Pseudomonas tolaasii cultures efficiently methylated Se at these concentrations. Nearly perfect linear correlations between the spiked Se concentrations and Dimethylselenide, Dimethyldiselenide, Dimethylselenylsulfide and 2-hydroxy-3-(methylselanyl)propanoic acid were observed up to 80 nM. The efficiency of methylation increased linearly with increasing initial Se concentration, arguing that the enzymes involved are not constitutive, but methylation proceeds promiscuously via pathways of S methylation. From the ratio of all methylated Se and S species, one can conclude that between 0.30% and 3.48% of atoms were Se promiscuously methylated at such low concentrations. At concentrations higher than 640 nM (∼50 µg/L) a steep increase in methylation and volatilization was observed, which suggested the induction of specific enzymes. Promiscuous methylation at low environmental concentrations calls into question that view that methylated Se in the atmosphere is a result of a purposeful Se metabolism serving detoxification. Rather, the concentrations of methylated Se in the atmosphere may be "coincidental" i.e., determined by the activity of S cycling microorganisms. Further, a steep increase in methylation efficiency when surpassing a certain threshold concentration (here ∼50 µg/L) calls into question that natural methylation can be estimated from high Se spikes in laboratory systems, yet highlights the possibility of using bacterial methylation as an effective remediation strategy for media higher concentrated in Se.


Asunto(s)
Selenio , Humanos , Selenio/metabolismo , Volatilización , Metilación , Cadena Alimentaria , Azufre
3.
Heliyon ; 9(4): e15512, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37128350

RESUMEN

The lack of high-grade scandium (Sc) ores and recovery strategies has stimulated research on the exploitation of non-ore-related secondary sources that have great potential to safeguard the critical raw materials supply of the EU's economy. Waste materials may satisfy the growing global Sc demand, specifically residues from titanium dioxide (TiO2) production. New technologies are being developed for the recovery of Sc from such residues; however, the possible environmental impacts of intermediary products and residues are usually not considered. In order to provide a comprehensive ecotoxicity characterisation of the wastes and intermediate residues resulting from one promising new technology, acid-resistant nanofiltration (arNF), a waste-specific ecotoxicity toolkit was established. Three ecotoxicity assays were selected with specific test parameters providing the most diverse outcome for toxicity characterisation at different trophic levels: Aliivibrio fischeri (bacteria) bioluminescence inhibition (30 min exposure), Daphnia magna (crustacean) lethality and immobilisation (24 h exposure) and Lemna minor (plant) growth inhibition with determination of the frond number (7 d exposure). According to our results, the environmental impact of the generated intermediate and final residues on the aquatic ecosystem was mitigated by the consecutive steps of the filtration methods applied. High and statistically significant toxicity attenuation was achieved according to each test organism: toxicity was lowered based on EC20 values, according to the A. fischeri bioluminescence inhibition assay (by 97%), D. magna lethality (by 99%) and L. minor frond number (by 100%), respectively, after the final filtration step, nanofiltration, in comparison to the original waste. Our results underline the importance of assessing chemical technologies' ecotoxicological and environmental impacts with easy-to-apply and cost-effective test methods to showcase the best available technologies.

4.
ACS Sustain Chem Eng ; 11(15): 5883-5894, 2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-37091124

RESUMEN

Scandium (Sc), declared a critical raw material in the European Union (EU), could face further supply issues as the EU depends almost entirely on imports from China, Russia, and Ukraine. In this study, a tandem nanofiltration-solvent extraction procedure for Sc recovery from titania (TiO2) acid waste was piloted and then augmented by antisolvent crystallization. The new process, comprising advanced filtration (hydroxide precipitation, micro-, ultra-, and nanofiltration), solvent extraction, and antisolvent crystallization, was assessed in relation to material and energy inputs and benchmarked on ScF3 production. From ∼1 m3 of European acid waste containing traces of Sc (81 mg L-1), ∼13 g of Sc (43% yield, nine stages) was recovered as (NH4)3ScF6 with a purity of approximately 95%, demonstrating the technical feasibility of the approach. The production costs per kilogram of ScF3 were lower than reported market prices, which underscores a competitive process at scale. Although a few technical bottlenecks (e.g., S/L separation and electricity consumption) need to be overcome, combining advanced filtration with solvent extraction and antisolvent crystallization promises a future supply of this critical raw material from European secondary sources.

5.
J Hazard Mater ; 447: 130829, 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-36682249

RESUMEN

Perovskite solar cells represent an emerging and highly promising renewable energy technology. However, the most efficient perovskite solar cells critically depend on the use of lead. This represents a possible environmental concern potentially limiting the technologies' commercialization. Here, we demonstrate a facile recycling process for PbI2, the most common lead-based precursor in perovskite absorber material. The process uses only hot water to effectively extract lead from synthetic precursor mixes, plastic- and glass-based perovskites (92.6 - 100% efficiency after two extractions). When the hot extractant is cooled, crystalline PbI2 in high purity (> 95.9%) precipitated with a high yield: from glass-based perovskites, the first cycle of extraction / precipitation was sufficient to recover 94.4 ± 5.6% of Pb, whereas a second cycle yielded another 10.0 ± 5.2% Pb, making the recovery quantitative. The solid extraction residue remaining is consequently deprived of metals and may thus be disposed as non-hazardous waste. Therefore, exploiting the highly temperature-dependent solubility of PbI2 in water provides a straightforward, easy to implement way to efficiently extract lead from PSC at the end-of-life and deposit the extraction residues in a cost-effective manner, mitigating the potential risk of lead leaching at the perovskites' end-of-life.

6.
J Hazard Mater ; 436: 128995, 2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35525217

RESUMEN

Efficient and stable perovskite solar cells rely on the use of Pb species potentially challenging the technologies' commercialisation. In this study, the fate of Pb derived from two common perovskite precursors is compared to cationic lead in soil-water microcosm experiments under various biogeochemical conditions. The rapid and efficient removal of Pb from the aqueous phase is demonstrated by inductively coupled plasma mass spectrometry. Sequential soil extraction results reveal that a substantial amount of Pb is associated with immobile fractions, whereas a minor proportion of Pb may become available again in the long term, when oxygen is depleted (e.g. during water logging). X-ray absorption spectroscopy results reveal that the sorption of Pb on mineral phases represents the most likely sequestration mechanism. The obtained results suggest that the availability of leached Pb from perovskite solar cells is naturally limited in soils and that its adverse effects on soil biota are possibly negligible in oxic soils. All three Pb sources used behaved very similar in the experiments, wherefore we conclude that perovskite derived Pb will have a similar fate compared to cationic Pb, so that established risk assessment considerations for Pb remain legitimate.


Asunto(s)
Contaminantes del Suelo , Suelo , Compuestos de Calcio , Plomo/análisis , Óxidos , Suelo/química , Contaminantes del Suelo/análisis , Titanio , Agua/análisis
7.
Cell ; 185(4): 585-602.e29, 2022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-35051368

RESUMEN

The relevance of extracellular magnesium in cellular immunity remains largely unknown. Here, we show that the co-stimulatory cell-surface molecule LFA-1 requires magnesium to adopt its active conformation on CD8+ T cells, thereby augmenting calcium flux, signal transduction, metabolic reprogramming, immune synapse formation, and, as a consequence, specific cytotoxicity. Accordingly, magnesium-sufficiency sensed via LFA-1 translated to the superior performance of pathogen- and tumor-specific T cells, enhanced effectiveness of bi-specific T cell engaging antibodies, and improved CAR T cell function. Clinically, low serum magnesium levels were associated with more rapid disease progression and shorter overall survival in CAR T cell and immune checkpoint antibody-treated patients. LFA-1 thus directly incorporates information on the composition of the microenvironment as a determinant of outside-in signaling activity. These findings conceptually link co-stimulation and nutrient sensing and point to the magnesium-LFA-1 axis as a therapeutically amenable biologic system.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Antígeno-1 Asociado a Función de Linfocito/metabolismo , Magnesio/metabolismo , Animales , Infecciones Bacterianas/inmunología , Restricción Calórica , Línea Celular Tumoral , Citotoxicidad Inmunológica , Células HEK293 , Humanos , Memoria Inmunológica , Sinapsis Inmunológicas/metabolismo , Inmunoterapia , Activación de Linfocitos/inmunología , Sistema de Señalización de MAP Quinasas , Magnesio/administración & dosificación , Masculino , Ratones Endogámicos C57BL , Neoplasias/inmunología , Neoplasias/patología , Neoplasias/terapia , Fenotipo , Fosforilación , Proteínas Proto-Oncogénicas c-jun/metabolismo
8.
Nutrients ; 13(4)2021 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-33806211

RESUMEN

Dietary organic selenium (Se) is commonly utilized to increase formation of selenoproteins, including the major antioxidant protein, glutathione peroxidase (GPx). Inorganic Se salts, such as sodium selenite, are also incorporated into selenoproteins, and there is evidence that nanoelemental Se added to the diet may also be effective. We conducted two trials, the first investigated inorganic Se (selenite), organic Se (L-selenomethionine) and nanoelemental Se, in conventional mice. Their bioavailability and effectiveness to increase GPx activity were examined. The second trial focused on determining the mechanism by which dietary Se is incorporated into tissue, utilising both conventional and germ-free (GF) mice. Mice were fed a diet with minimal Se, 0.018 parts per million (ppm), and diets with Se supplementation, to achieve 0.07, 0.15, 0.3 and 1.7 ppm Se, for 5 weeks (first trial). Mass spectrometry, Western blotting and enzymatic assays were used to investigate bioavailability, protein levels and GPx activity in fresh frozen tissue (liver, ileum, plasma, muscle and feces) from the Se fed animals. Inorganic, organic and nanoelemental Se were all effectively incorporated into tissues. The high Se diet (1.7 ppm) resulted in the highest Se levels in all tissues and plasma, independent of the Se source. Interestingly, despite being ~11 to ~25 times less concentrated than the high Se, the lower Se diets (0.07; 0.15) resulted in comparably high Se levels in liver, ileum and plasma for all Se sources. GPx protein levels and enzyme activity were significantly increased by each diet, relative to control. We hypothesised that bacteria may be a vector for the conversion of nanoelemental Se, perhaps in exchange for S in sulphate metabolising bacteria. We therefore investigated Se incorporation from low sulphate diets and in GF mice. All forms of selenium were bioavailable and similarly significantly increased the antioxidant capability of GPx in the intestine and liver of GF mice and mice with sulphate free diets. Se from nanoelemental Se resulted in similar tissue levels to inorganic and organic sources in germ free mice. Thus, endogenous mechanisms, not dependent on bacteria, reduce nanoelemental Se to the metabolite selenide that is then converted to selenophosphate, synthesised to selenocysteine, and incorporated into selenoproteins. In particular, the similar efficacy of nanoelemental Se in comparison to organic Se in both trials is important in the view of the currently limited cheap sources of Se.


Asunto(s)
Glutatión Peroxidasa/metabolismo , Selenio/metabolismo , Alimentación Animal , Animales , Disponibilidad Biológica , Ratones , Ratones Endogámicos C57BL , Modelos Animales
9.
Appl Environ Microbiol ; 87(12): e0010421, 2021 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-33811024

RESUMEN

Selenium (Se) deficiency affects many millions of people worldwide, and the volatilization of methylated Se species to the atmosphere may prevent Se from entering the food chain. Despite the extent of Se deficiency, little is known about fluxes in volatile Se species and their temporal and spatial variation in the environment, giving rise to uncertainty in atmospheric transport models. To systematically determine fluxes, one can rely on laboratory microcosm experiments to quantify Se volatilization in different conditions. Here, it is demonstrated that the sulfur (S) status of bacteria crucially determines the amount of Se volatilized. Solid-phase microextraction gas chromatography mass spectrometry showed that Pseudomonas tolaasii efficiently and rapidly (92% in 18 h) volatilized Se to dimethyl diselenide and dimethyl selenyl sulfide through promiscuous enzymatic reactions with the S metabolism. However, when the cells were supplemented with cystine (but not methionine), a major proportion of the Se (∼48%) was channeled to thus-far-unknown, nonvolatile Se compounds at the expense of the previously formed dimethyl diselenide and dimethyl selenyl sulfide (accounting for <4% of total Se). Ion chromatography and solid-phase extraction were used to isolate unknowns, and electrospray ionization ion trap mass spectrometry, electrospray ionization quadrupole time-of-flight mass spectrometry, and microprobe nuclear magnetic resonance spectrometry were used to identify the major unknown as a novel Se metabolite, 2-hydroxy-3-(methylselanyl)propanoic acid. Environmental S concentrations often exceed Se concentrations by orders of magnitude. This suggests that in fact S status may be a major control of selenium fluxes to the atmosphere. IMPORTANCE Volatilization from soil to the atmosphere is a major driver for Se deficiency. "Bottom-up" models for atmospheric Se transport are based on laboratory experiments quantifying volatile Se compounds. The high Se and low S concentrations in such studies poorly represent the environment. Here, we show that S amino acid status has in fact a decisive effect on the production of volatile Se species in Pseudomonas tolaasii. When the strain was supplemented with S amino acids, a major proportion of the Se was channeled to thus-far-unknown, nonvolatile Se compounds at the expense of volatile compounds. This hierarchical control of the microbial S amino acid status on Se cycling has been thus far neglected. Understanding these interactions-if they occur in the environment-will help to improve atmospheric Se models and thus predict drivers of Se deficiency.


Asunto(s)
Aminoácidos Sulfúricos/metabolismo , Pseudomonas/metabolismo , Selenio/metabolismo , Metilación , Propionatos/metabolismo , Ácido Selenioso/metabolismo , Microbiología del Suelo , Volatilización
10.
N Biotechnol ; 56: 130-139, 2020 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-31945501

RESUMEN

In situ bioremediation processes are important for control of pollution and clean-up of contaminated sites. The study and implementation of such processes can be designed through investigations on natural mechanisms of absorption, biotransformation, bioaccumulation and toxicity of pollutants in plants and microorganisms. Here, the phytotoxic effects of Cr(VI) and Cd(II) on seed germination and plant growth of Lepidium sativum have been examined at various concentrations (30-300 mg/L) in single ion solutions. The studies also addressed the ecotoxicity of metal ions on Azotobacter chroococcum and Pichia sp. isolated from soil. Microbial growth was estimated by weighing the dry biomass and determining the enzymatic activities of dehydrogenase and catalase. The results showed that Cr(VI) and Cd(II) can inhibit L. sativum seed germination and root development, depending on the metal ion and its concentration. The phytotoxic effect of heavy metals was also confirmed by the reduced amounts of dried biomass. Toxicity assays demonstrated the adverse effect of Cr(VI) and Cd(II) on growth of Azotobacter sp. and Pichia sp., manifested by a biomass decrease of more than 50 % at heavy metal concentrations of 150-300 mg/L. The results confirmed close links between phytotoxicity of metals and their bioavailability for phytoextraction. Studies on the bioremediation potential of soils contaminated with Cr(VI) and Cd(II) using microbial strains focusing on Azotobacter sp. and Pichia sp. showed that the microbes can only tolerate heavy metal stress at low concentrations. These investigations on plants and microorganisms revealed their ability to withstand metal toxicity and develop tolerance to heavy metals.


Asunto(s)
Azotobacter/efectos de los fármacos , Germinación/efectos de los fármacos , Lepidium sativum/efectos de los fármacos , Metales Pesados/toxicidad , Pichia/efectos de los fármacos , Plantones/efectos de los fármacos , Azotobacter/crecimiento & desarrollo , Azotobacter/aislamiento & purificación , Biodegradación Ambiental , Relación Dosis-Respuesta a Droga , Lepidium sativum/crecimiento & desarrollo , Pichia/crecimiento & desarrollo , Pichia/aislamiento & purificación , Microbiología del Suelo
11.
Chimia (Aarau) ; 73(11): 874-879, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31753068

RESUMEN

Renewable energies, such as sunlight, wind and geothermal heat, are resources that are replaced rapidly by natural processes. However, wind, hydro and solar installations strictly require raw materials that are, in fact, not renewable. Many raw materials are already facing a supply shortage which cannot be easily overcome. This work reviews the problem of critical raw material (CRM) use in photovoltaics (PV) as an example and explains why supply cannot be easily increased to meet demand. We discuss whether there is indeed a 'struggle for elements' in a Darwinian sense, which ultimately leads to a 'survival of the fittest' race in renewable energy technology. In the case of PV, the perception of the definition of 'fittest' needs to change from that considering energy conversion efficiency alone to that which holistically considers net energy produced per emission under the premise that sufficient environmentally and socially acceptable raw material supply exists for renewable energies and all other sectors.

12.
J Hazard Mater ; 362: 467-481, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30268020

RESUMEN

Critical raw materials (CRMs) are essential in the development of novel high-tech applications. They are essential in sustainable materials and green technologies, including renewable energy, emissionfree electric vehicles and energy-efficient lighting. However, the sustainable supply of CRMs is a major concern. Recycling end-of-life devices is an integral element of the CRMs supply policy of many countries. Waste electrical and electronic equipment (WEEE) is an important secondary source of CRMs. Currently, pyrometallurgical processes are used to recycle metals from WEEE. These processes are deemed imperfect, energy-intensive and non-selective towards CRMs. Biotechnologies are a promising alternative to the current industrial best available technologies (BAT). In this review, we present the current frontiers in CRMs recovery from WEEE using biotechnology, the biochemical fundamentals of these bio-based technologies and discuss recent research and development (R&D) activities. These technologies encompass biologically induced leaching (bioleaching) from various matrices,biomass-induced sorption (biosorption), and bioelectrochemical systems (BES).


Asunto(s)
Biotecnología/métodos , Residuos Electrónicos/análisis , Metales/análisis , Procesos Autotróficos , Biomasa , Electricidad , Electroquímica , Electrólisis , Electrónica , Metalurgia , Administración de Residuos
13.
Appl Microbiol Biotechnol ; 102(23): 10299-10314, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30294753

RESUMEN

In the last decade, biological degradation and mineralization of antibiotics have been increasingly reported feats of environmental bacteria. The most extensively described example is that of sulfonamides that can be degraded by several members of Actinobacteria and Proteobacteria. Previously, we reported sulfamethoxazole (SMX) degradation and partial mineralization by Achromobacter denitrificans strain PR1, isolated from activated sludge. However, further studies revealed an apparent instability of this metabolic trait in this strain. Here, we investigated this instability and describe the finding of a low-abundance and slow-growing actinobacterium, thriving only in co-culture with strain PR1. This organism, named GP, shared highest 16S rRNA gene sequence similarity (94.6-96.9%) with the type strains of validly described species of the genus Leucobacter. This microbial consortium was found to harbor a homolog to the sulfonamide monooxygenase gene (sadA) also found in other sulfonamide-degrading bacteria. This gene is overexpressed in the presence of the antibiotic, and evidence suggests that it codes for a group D flavin monooxygenase responsible for the ipso-hydroxylation of SMX. Additional side reactions were also detected comprising an NIH shift and a Baeyer-Villiger rearrangement, which indicate an inefficient biological transformation of these antibiotics in the environment. This work contributes to further our knowledge in the degradation of this ubiquitous micropollutant by environmental bacteria.


Asunto(s)
Achromobacter denitrificans/metabolismo , Actinobacteria/metabolismo , Biodegradación Ambiental , Sulfametoxazol/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Clonación Molecular , Regulación Bacteriana de la Expresión Génica , Biblioteca de Genes , Metagenómica , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Aguas del Alcantarillado/microbiología
14.
J Chem Technol Biotechnol ; 93(9): 2498-2510, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30158737

RESUMEN

Since the world economy has been confronted with an increasing risk of supply shortages of critical raw materials (CRMs), there has been a major interest in identifying alternative secondary sources of CRMs. Bauxite residues from alumina production are available at a multi-million tonnes scale worldwide. So far, attempts have been made to find alternative re-use applications for bauxite residues, for instance in cement / pig iron production. However, bauxite residues also constitute an untapped secondary source of CRMs. Depending on their geological origin and processing protocol, bauxite residues can contain considerable amounts of valuable elements. The obvious primary consideration for CRM recovery from such residues is the economic value of the materials contained. However, there are further benefits from re-use of bauxite residues in general, and from CRM recovery in particular. These go beyond monetary values (e.g. reduced investment / operational costs resulting from savings in disposal). For instance, benefits for the environment and health can be achieved by abatement of tailing storage as well as by reduction of emissions from conventional primary mining. Whereas certain tools (e.g. life-cycle analysis) can be used to quantify the latter, other benefits (in particular sustained social and technological development) are harder to quantify. This review evaluates strategies of bauxite residue re-use / recycling and identifies associated benefits beyond elemental recovery. Furthermore, methodologies to translate risks and benefits into quantifiable data are discussed. Ultimately, such quantitative data are a prerequisite for facilitating decision-making regarding bauxite residue re-use / recycling and a stepping stone towards developing a zero-waste alumina production process. © 2018 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

15.
Dalton Trans ; 47(32): 10837-10841, 2018 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-30019062

RESUMEN

Ferritin, a naturally occuring iron-storage protein, plays an important role in nanoengineering and biomedical applications. Upon iron removal, apoferritin was shown to allow the encapsulation of an artificial transfer hydrogenase (ATHase) based on the streptavidin-biotin technology. The third coordination sphere, provided by ferritin, significantly influences the catalytic activity of an ATHase for the reduction of cyclic imines.


Asunto(s)
Apoferritinas/química , Complejos de Coordinación/química , Hidrogenasas/química , Nanosferas/química , Ingeniería de Proteínas , Animales , Biotina/química , Catálisis , Caballos/fisiología , Hidrogenasas/metabolismo , Iminas/química , Iminas/metabolismo , Hierro/metabolismo , Conformación Molecular , Estructura Terciaria de Proteína , Bazo/enzimología , Estreptavidina/química
16.
Appl Microbiol Biotechnol ; 102(17): 7635-7641, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29931602

RESUMEN

The environmental fate of major (e.g. C, N, S, Fe and Mn) and trace (e.g. As, Cr, Sb, Se and U) elements is governed by microbially catalysed reduction-oxidation (redox) reactions. Mesocosms are routinely used to elucidate trace metal fate on the basis of correlations between biogeochemical proxies such as dissolved element concentrations, trace element speciation and dissolved organic matter. However, several redox processes may proceed simultaneously in natural soils and sediments (particularly, reductive Mn and Fe dissolution and metal/metalloid reduction), having a contrasting effect on element mobility. Here, a novel redox-stat (Rcont) bioreactor allowed precise control of the redox potential (159 ± 11 mV, ~ 2 months), suppressing redox reactions thermodynamically favoured at lower redox potential (i.e. reductive mobilisation of Fe and As). For a historically contaminated mining soil, As release could be attributed to desorption of arsenite [As(III)] and Mn reductive dissolution. By contrast, the control bioreactor (Rnat, with naturally developing redox potential) showed almost double As release (337 vs. 181 µg g-1) due to reductive dissolution of Fe (1363 µg g-1 Fe2+ released; no Fe2+ detected in Rcont) and microbial arsenate [As(V)] reduction (189 µg g-1 released vs. 46 µg g-1 As(III) in Rcont). A redox-stat bioreactor thus represents a versatile tool to study processes underlying mobilisation and sequestration of other trace elements as well.


Asunto(s)
Arsénico/aislamiento & purificación , Reactores Biológicos , Restauración y Remediación Ambiental/métodos , Minería , Contaminantes del Suelo/aislamiento & purificación , Oligoelementos/aislamiento & purificación , Arsénico/química , Metales Pesados/química , Metales Pesados/aislamiento & purificación , Oxidación-Reducción , Suelo/química , Contaminantes del Suelo/química , Oligoelementos/química
17.
N Biotechnol ; 39(Pt A): 125-134, 2017 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-27620529

RESUMEN

Certain species of plants can benefit from synergistic effects with plant growth-promoting rhizobacteria (PGPR) that improve plant growth and metal accumulation, mitigating toxic effects on plants and increasing their tolerance to heavy metals. The application of PGPR as biofertilizers and atmospheric nitrogen fixators contributes considerably to the intensification of the phytoremediation process. In this paper, we have built a system consisting of rhizospheric Azotobacter microbial populations and Lepidium sativum plants, growing in solutions containing heavy metals in various concentrations. We examined the ability of the organisms to grow in symbiosis so as to stimulate the plant growth and enhance its tolerance to Cr(VI) and Cd(II), to ultimately provide a reliable phytoremediation system. The study was developed at the laboratory level and, at this stage, does not assess the inherent interactions under real conditions occurring in contaminated fields with autochthonous microflora and under different pedoclimatic conditions and environmental stresses. Azotobacter sp. bacteria could indeed stimulate the average germination efficiency of Lepidium sativum by almost 7%, average root length by 22%, average stem length by 34% and dry biomass by 53%. The growth of L. sativum has been affected to a greater extent in Cd(II) solutions due its higher toxicity compared to that of Cr(VI). The reduced tolerance index (TI, %) indicated that plant growth in symbiosis with PGPR was however affected by heavy metal toxicity, while the tolerance of the plant to heavy metals was enhanced in the bacteria-plant system. A methodology based on artificial neural networks (ANNs) and differential evolution (DE), specifically a neuro-evolutionary approach, was applied to model germination rates, dry biomass and root/stem length and proving the robustness of the experimental data. The errors associated with all four variables are small and the correlation coefficients higher than 0.98, which indicate that the selected models can efficiently predict the experimental data.


Asunto(s)
Bacterias/metabolismo , Lepidium/metabolismo , Metales Pesados/metabolismo , Rizosfera , Microbiología del Suelo , Suelo/química , Simbiosis , Azotobacter/metabolismo , Biodegradación Ambiental , Lepidium/crecimiento & desarrollo , Modelos Teóricos , Redes Neurales de la Computación , Contaminantes del Suelo/aislamiento & purificación
18.
Environ Sci Technol ; 50(17): 9124-32, 2016 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-27454004

RESUMEN

Concentrations of soil arsenic (As) in the vicinity of the former Zloty Stok gold mine (Lower Silesia, southwest Poland) exceed 1000 µg g(-1) in the area, posing an inherent threat to neighboring bodies of water. This study investigated continuous As mobilization under reducing conditions for more than 3 months. In particular, the capacity of autochthonic microflora that live on natural organic matter as the sole carbon/electron source for mobilizing As was assessed. A biphasic mobilization of As was observed. In the first two months, As mobilization was mainly conferred by Mn dissolution despite the prevalence of Fe (0.1 wt % vs 5.4 for Mn and Fe, respectively) as indicated by multiple regression analysis. Thereafter, the sudden increase in aqueous As[III] (up to 2400 µg L(-1)) was attributed to an almost quintupling of the autochthonic dissimilatory As-reducing community (quantitative polymerase chain reaction). The aqueous speciation influenced by microbial activity led to a reduction of solid phase As species (X-ray absorption fine structure spectroscopy) and a change in the elemental composition of As hotspots (micro X-ray fluorescence mapping). The depletion of most natural dissolved organic matter and the fact that an extensive mobilization of As[III] occurred after two months raises concerns about the long-term stability of historically As-contaminated sites.


Asunto(s)
Arsénico , Suelo/química , Reactores Biológicos , Minería , Medición de Riesgo , Contaminantes del Suelo
19.
Chem Commun (Camb) ; 52(60): 9462-5, 2016 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-27380900

RESUMEN

Silica nanoparticles equipped with an artificial imine reductase display remarkable activity towards cyclic imine- and NAD(+) reduction. The method, based on immobilization and protection of streptavidin on silica nanoparticles, shields the biotinylated metal cofactor against deactivation yielding over 46 000 turnovers in pure samples and 4000 turnovers in crude cellular extracts.

20.
Chemosphere ; 134: 536-43, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25592464

RESUMEN

Many soils polluted by antimony (Sb) are subject to fluctuating waterlogging conditions; yet, little is known about how these affect the mobility of this toxic element under field conditions. Here, we compared Sb leaching from a calcareous shooting range soil under drained and waterlogged conditions using four large outdoor lysimeters. After monitoring the leachate samples taken at bi-weekly intervals for >1.5 years under drained conditions, two of the lysimeters were subjected to waterlogging with a water table fluctuating according to natural rainfall water infiltration. Antimony leachate concentrations under drained conditions showed a strong seasonal fluctuation between 110 µg L(-1) in summer and <40 µg L(-1) in winter, which closely correlated with fluctuations in dissolved organic carbon (DOC) concentrations. With the development of anaerobic conditions upon waterlogging, Sb in leachate decreased to 2-5 µg L(-1) Sb and remained stable at this level. Antimony speciation measurements in soil solution indicated that this decrease in Sb(V) concentrations was attributable to the reduction of Sb(V) to Sb(III) and the stronger sorption affinity of the latter to iron (Fe) (hydr)oxide phases. Our results demonstrate the importance of considering seasonal and waterlogging effects in the assessment of the risks from Sb-contaminated sites.


Asunto(s)
Antimonio/análisis , Agua Subterránea/análisis , Contaminantes del Suelo/análisis , Suelo/química , Agua/química , Alemania
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...