Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biomolecules ; 14(4)2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38672502

RESUMEN

In recent years, CRISPR-Cas toolboxes for Streptomyces editing have rapidly accelerated natural product discovery and engineering. However, Cas efficiencies are oftentimes strain-dependent, and the commonly used Streptococcus pyogenes Cas9 (SpCas9) is notorious for having high levels of off-target toxicity effects. Thus, a variety of Cas proteins is required for greater flexibility of genetic manipulation within a wider range of Streptomyces strains. This study explored the first use of Acidaminococcus sp. Cas12j, a hypercompact Cas12 subfamily, for genome editing in Streptomyces and its potential in activating silent biosynthetic gene clusters (BGCs) to enhance natural product synthesis. While the editing efficiencies of Cas12j were not as high as previously reported efficiencies of Cas12a and Cas9, Cas12j exhibited higher transformation efficiencies compared to SpCas9. Furthermore, Cas12j demonstrated significantly improved editing efficiencies compared to Cas12a in activating BGCs in Streptomyces sp. A34053, a strain wherein both SpCas9 and Cas12a faced limitations in accessing the genome. Overall, this study expanded the repertoire of Cas proteins for genome editing in actinomycetes and highlighted not only the potential of recently characterized Cas12j in Streptomyces but also the importance of having an extensive genetic toolbox for improving the editing success of these beneficial microbes.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Streptomyces , Streptomyces/genética , Streptomyces/metabolismo , Edición Génica/métodos , Acidaminococcus/genética , Proteína 9 Asociada a CRISPR/genética , Proteína 9 Asociada a CRISPR/metabolismo , Familia de Multigenes , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Asociadas a CRISPR/genética , Proteínas Asociadas a CRISPR/metabolismo , Genoma Bacteriano
2.
Commun Biol ; 7(1): 50, 2024 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-38184720

RESUMEN

Natural products possess significant therapeutic potential but remain underutilized despite advances in genomics and bioinformatics. While there are approaches to activate and upregulate natural product biosynthesis in both native and heterologous microbial strains, a comprehensive strategy to elicit production of natural products as well as a generalizable and efficient method to interrogate diverse native strains collection, remains lacking. Here, we explore a flexible and robust integrase-mediated multi-pronged activation approach to reliably perturb and globally trigger antibiotics production in actinobacteria. Across 54 actinobacterial strains, our approach yielded 124 distinct activator-strain combinations which consistently outperform wild type. Our approach expands accessible metabolite space by nearly two-fold and increases selected metabolite yields by up to >200-fold, enabling discovery of Gram-negative bioactivity in tetramic acid analogs. We envision these findings as a gateway towards a more streamlined, accelerated, and scalable strategy to unlock the full potential of Nature's chemical repertoire.


Asunto(s)
Actinobacteria , Productos Biológicos , Actinomyces , Antibacterianos/farmacología , Productos Biológicos/farmacología , Biología Computacional
3.
Molecules ; 28(15)2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37570802

RESUMEN

Natural products have long been used as a source of antimicrobial agents against various microorganisms. Actinobacteria are a group of bacteria best known to produce a wide variety of bioactive secondary metabolites, including many antimicrobial agents. In this study, four actinobacterial strains found in Singapore terrestrial soil were investigated as potential sources of new antimicrobial compounds. Large-scale cultivation, chemical, and biological investigation led to the isolation of a previously undescribed tetronomycin A (1) that demonstrated inhibitory activities against both Gram-positive bacteria Staphylococcus aureus (SA) and methicillin-resistant Staphylococcus aureus (MRSA) (i.e., MIC90 of 2-4 µM and MBC90 of 9-12 µM), and several known antimicrobial compounds, namely nonactin, monactin, dinactin, 4E-deacetylchromomycin A3, chromomycin A2, soyasaponin II, lysolipin I, tetronomycin, and naphthomevalin. Tetronomycin showed a two- to six-fold increase in antibacterial activity (i.e., MIC90 and MBC90 of 1-2 µM) as compared to tetronomycin A (1), indicating the presence of an oxy-methyl group at the C-27 position is important for antibacterial activity.


Asunto(s)
Antiinfecciosos , Productos Biológicos , Staphylococcus aureus Resistente a Meticilina , Streptomycetaceae , Productos Biológicos/farmacología , Productos Biológicos/química , Singapur , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología , Antiinfecciosos/farmacología , Bacterias
4.
Microb Cell Fact ; 22(1): 84, 2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37118806

RESUMEN

BACKGROUND: Nature has provided unique molecular scaffolds for applications including therapeutics, agriculture, and food. Due to differences in ecological environments and laboratory conditions, engineering is often necessary to uncover and utilize the chemical diversity. Although we can efficiently activate and mine these often complex 3D molecules, sufficient production of target molecules for further engineering and application remain a considerable bottleneck. An example of these bioactive scaffolds is armeniaspirols, which are potent polyketide antibiotics against gram-positive pathogens and multi-resistance gram-negative Helicobacter pylori. Here, we examine the upregulation of armeniaspirols in an alternative Streptomyces producer, Streptomyces sp. A793. RESULTS: Through an incidental observation of enhanced yields with the removal of a competing polyketide cluster, we observed seven-fold improvement in armeniaspirol production. To further investigate the improvement of armeniaspirol production, we examine upregulation of armeniaspirols through engineering of biosynthetic pathways and primary metabolism; including perturbation of genes in biosynthetic gene clusters and regulation of triacylglycerols pool. CONCLUSION: With either overexpression of extender unit pathway or late-stage N-methylation, or the deletion of a competing polyketide cluster, we can achieve seven-fold to forty nine-fold upregulation of armeniaspirol production. The most significant upregulation was achieved by expression of heterologous fatty acyl-CoA synthase, where we observed not only a ninety seven-fold increase in production yields compared to wild type, but also an increase in the diversity of observed armeniaspirol intermediates and analogs.


Asunto(s)
Policétidos , Streptomyces , Streptomyces/genética , Streptomyces/metabolismo , Policétidos/metabolismo , Antibacterianos , Vías Biosintéticas , Familia de Multigenes
5.
Synth Syst Biotechnol ; 8(2): 253-261, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37007277

RESUMEN

With the advent of rapid automated in silico identification of biosynthetic gene clusters (BGCs), genomics presents vast opportunities to accelerate natural product (NP) discovery. However, prolific NP producers, Streptomyces, are exceptionally GC-rich (>80%) and highly repetitive within BGCs. These pose challenges in sequencing and high-quality genome assembly which are currently circumvented via intensive sequencing. Here, we outline a more cost-effective workflow using multiplex Illumina and Oxford Nanopore sequencing with hybrid long-short read assembly algorithms to generate high quality genomes. Our protocol involves subjecting long read-derived assemblies to up to 4 rounds of polishing with short reads to yield accurate BGC predictions. We successfully sequenced and assembled 8 GC-rich Streptomyces genomes whose lengths range from 7.1 to 12.1 Mb with a median N50 of 8.2 Mb. Taxonomic analysis revealed previous misrepresentation among these strains and allowed us to propose a potentially new species, Streptomyces sydneybrenneri. Further comprehensive characterization of their biosynthetic, pan-genomic and antibiotic resistance features especially for molecules derived from type I polyketide synthase (PKS) BGCs reflected their potential as alternative NP hosts. Thus, the genome assemblies and insights presented here are envisioned to serve as gateway for the scientific community to expand their avenues in NP discovery.

6.
Molecules ; 27(23)2022 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-36500287

RESUMEN

Large scale cultivation and chemical investigation of an extract obtained from Actimonadura sp. resulted in the identification of six previously undescribed spirotetronates (pyrrolosporin B and decatromicins C-G; 7-12), along with six known congeners, namely decatromicins A-B (1-2), BE-45722B-D (3-5), and pyrrolosporin A (6). The chemical structures of compounds 1-12 were characterized via comparison with previously reported data and analysis of 1D/2D NMR and MS data. The structures of all new compounds were highly related to the spirotetronate type compounds, decatromicin and pyrrolosporin, with variations in the substituents on the pyrrole and aglycone moieties. All compounds were evaluated for antibacterial activity against the Gram-negative bacteria, Acinetobacter baumannii and Gram-positive bacteria, Staphylococcus aureus and were investigated for their cytotoxicity against the human cancer cell line A549. Of these, decatromicin B (2), BE-45722B (3), and pyrrolosporin B (7) exhibited potent antibacterial activities against both Gram-positive (MIC90 between 1-3 µM) and Gram-negative bacteria (MIC90 values ranging from 12-36 µM) with weak or no cytotoxic activity against A549 cells.


Asunto(s)
Policétidos , Humanos , Policétidos/química , Actinomadura , Antibacterianos/farmacología , Antibacterianos/química , Bacterias Gramnegativas , Bacterias Grampositivas , Pruebas de Sensibilidad Microbiana
7.
Front Chem ; 10: 1024854, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36505735

RESUMEN

The present study investigated the molecular phylogeny, antimicrobial and cytotoxic activities of fungal endophytes obtained from the A*STAR Natural Organism Library (NOL) and previously isolated from Sungei Buloh Wetland Reserve, Singapore. Phylogenetic analysis based on ITS2 gene suggests that these isolates belong to 46 morphotypes and are affiliated to 23 different taxa in 17 genera of the Ascomycota phylum. Colletotrichum was the most dominant fungal genus accounting for 37% of all the isolates, followed by Diaporthe (13%), Phyllosticta (10.9%) and Diplodia (8.7%). Chemical elicitation using 5-azacytidine, a DNA methyltransferase inhibitor and suberoylanilide hydroxamic acid, a histone deacetylase inhibitor resulted in an increase in the number of active strains. Bioassay-guided isolation and structural elucidation yielded pestahivin and two new analogues from Bartalinia sp. F9447. Pestahivin and its related analogues did not exhibit antibacterial activity against Staphylococcus aureus but displayed strong antifungal activities against Candida albicans and Aspergillus brasiliensis, with IC50 values ranging from 0.46 ± 0.06 to 144 ± 18 µM. Pestahivin and its two analogues furthermore exhibited cytotoxic activity against A549 and MIA PACA-2 cancer cell lines with IC50 values in the range of 0.65 ± 0.12 to 42 ± 5.2 µM. The finding from this study reinforces that chemical epigenetic induction is a promising approach for the discovery of bioactive fungal secondary metabolites encoded by cryptic gene clusters.

8.
Molecules ; 28(1)2022 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-36615295

RESUMEN

Thiopeptides are macrocyclic natural products with potent bioactivity. Nine new natural thiopeptides (1−9) were obtained from a Nonomuraea jiangxiensis isolated from a terrestrial soil sample collected in Singapore. Even though some of these compounds were previously synthesized or isolated from engineered strains, herein we report the unprecedented isolation of these thiopeptides from a native Nonomuraea jiangxiensis. A comparison with the literature and a detailed analysis of the NMR and HRMS of compounds 1−9 was conducted to assign their chemical structures. The structures of all new compounds were highly related to the thiopeptide antibiotics GE2270, with variations in the substituents on the thiazole and amino acid moieties. Thiopeptides 1−9 exhibited a potent antimicrobial activity against the Gram-positive bacteria, Staphylococcus aureus with MIC90 values ranging from 2 µM to 11 µM. In addition, all compounds were investigated for their cytotoxicity against the human cancer cell line A549, none of the compounds were cytotoxic.


Asunto(s)
Actinomycetales , Péptidos , Humanos , Péptidos/química , Actinomycetales/metabolismo , Tiazoles/química , Antibacterianos/química
9.
Int J Mol Sci ; 21(22)2020 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-33202690

RESUMEN

Sortase A (SrtA) is a membrane-associated enzyme that anchors surface-exposed proteins to the cell wall envelope of Gram-positive bacteria such as Staphylococcus aureus. As SrtA is essential for Gram-positive bacterial pathogenesis but dispensable for microbial growth or viability, SrtA is considered a favorable target for the enhancement of novel anti-infective drugs that aim to interfere with key bacterial virulence mechanisms, such as biofilm formation, without developing drug resistance. Here, we used virtual screening to search an in-house natural compound library and identified two natural compounds, N1287 (Skyrin) and N2576 ((4,5-dichloro-1H-pyrrol-2-yl)-[2,4-dihydroxy-3-(4-methyl-pentyl)-phenyl]-methanone) that inhibited the enzymatic activity of SrtA. These compounds also significantly reduced the growth of S. aureus but possessed moderate mammalian toxicity. Furthermore, S. aureus strains treated with these compounds exhibited reduction in adherence to host fibrinogen, as well as biofilm formation. Hence, these compounds may represent an anti-infective therapy without the side effects of antibiotics.


Asunto(s)
Aminoaciltransferasas , Antibacterianos , Proteínas Bacterianas , Biopelículas/efectos de los fármacos , Cisteína Endopeptidasas , Inhibidores Enzimáticos , Staphylococcus aureus/fisiología , Células A549 , Aminoaciltransferasas/antagonistas & inhibidores , Aminoaciltransferasas/química , Aminoaciltransferasas/metabolismo , Antibacterianos/química , Antibacterianos/farmacología , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Biopelículas/crecimiento & desarrollo , Simulación por Computador , Cisteína Endopeptidasas/química , Cisteína Endopeptidasas/metabolismo , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Células Hep G2 , Humanos
10.
Microb Cell Fact ; 19(1): 71, 2020 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-32192516

RESUMEN

Notonesomycin A is a 32-membered bioactive glycosylated macrolactone known to be produced by Streptomyces aminophilus subsp. notonesogenes 647-AV1 and S. aminophilus DSM 40186. In a high throughput antifungal screening campaign, we identified an alternative notonesomycin A producing strain, Streptomyces sp. A793, and its biosynthetic gene cluster. From this strain, we further characterized a new more potent antifungal non-sulfated analogue, named notonesomycin B. Through CRISPR-Cas9 engineering of the biosynthetic gene cluster, we were able to increase the production yield of notonesomycin B by up to 18-fold as well as generate a strain that exclusively produces this analogue.


Asunto(s)
Antifúngicos/aislamiento & purificación , Macrólidos/aislamiento & purificación , Streptomyces/genética , Antifúngicos/metabolismo , Clonación Molecular , Macrólidos/metabolismo , Familia de Multigenes , Streptomyces/metabolismo
11.
Gastroenterology ; 157(6): 1615-1629.e17, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31446059

RESUMEN

BACKGROUND & AIMS: Some oncogenes encode transcription factors, but few drugs have been successfully developed to block their activity specifically in cancer cells. The transcription factor SALL4 is aberrantly expressed in solid tumor and leukemia cells. We developed a screen to identify compounds that reduce the viability of liver cancer cells that express high levels of SALL4, and we investigated their mechanisms. METHODS: We developed a stringent high-throughput screening platform comprising unmodified SNU-387 and SNU-398 liver cancer cell lines and SNU-387 cell lines engineered to express low and high levels of SALL4. We screened 1597 pharmacologically active small molecules and 21,575 natural product extracts from plant, bacteria, and fungal sources for those that selectively reduce the viability of cells with high levels of SALL4 (SALL4hi cells). We compared gene expression patterns of SALL4hi cells vs SALL4-knockdown cells using RNA sequencing and real-time polymerase chain reaction analyses. Xenograft tumors were grown in NOD/SCID gamma mice from SALL4hi SNU-398 or HCC26.1 cells or from SALL4lo patient-derived xenograft (PDX) cells; mice were given injections of identified compounds or sorafenib, and the effects on tumor growth were measured. RESULTS: Our screening identified 1 small molecule (PI-103) and 4 natural compound analogues (oligomycin, efrapeptin, antimycin, and leucinostatin) that selectively reduced viability of SALL4hi cells. We performed validation studies, and 4 of these compounds were found to inhibit oxidative phosphorylation. The adenosine triphosphate (ATP) synthase inhibitor oligomycin reduced the viability of SALL4hi hepatocellular carcinoma and non-small-cell lung cancer cell lines with minimal effects on SALL4lo cells. Oligomycin also reduced the growth of xenograft tumors grown from SALL4hi SNU-398 or HCC26.1 cells to a greater extent than sorafenib, but oligomycin had little effect on tumors grown from SALL4lo PDX cells. Oligomycin was not toxic to mice. Analyses of chromatin immunoprecipitation sequencing data showed that SALL4 binds approximately 50% of mitochondrial genes, including many oxidative phosphorylation genes, to activate their transcription. In comparing SALL4hi and SALL4-knockdown cells, we found SALL4 to increase oxidative phosphorylation, oxygen consumption rate, mitochondrial membrane potential, and use of oxidative phosphorylation-related metabolites to generate ATP. CONCLUSIONS: In a screening for compounds that reduce the viability of cells that express high levels of the transcription factor SALL4, we identified inhibitors of oxidative phosphorylation, which slowed the growth of xenograft tumors from SALL4hi cells in mice. SALL4 activates the transcription of genes that regulate oxidative phosphorylation to increase oxygen consumption, mitochondrial membrane potential, and ATP generation in cancer cells. Inhibitors of oxidative phosphorylation might be used for the treatment of liver tumors with high levels of SALL4.


Asunto(s)
Antineoplásicos/farmacología , Ensayos Analíticos de Alto Rendimiento/métodos , Neoplasias Hepáticas/tratamiento farmacológico , Factores de Transcripción/antagonistas & inhibidores , Animales , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Masculino , Ratones , Fosforilación Oxidativa/efectos de los fármacos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética , Ensayos Antitumor por Modelo de Xenoinjerto
12.
BMC Genomics ; 20(1): 374, 2019 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-31088369

RESUMEN

BACKGROUND: Phomafungin is a recently reported broad spectrum antifungal compound but its biosynthetic pathway is unknown. We combed publicly available Phoma genomes but failed to find any putative biosynthetic gene cluster that could account for its biosynthesis. RESULTS: Therefore, we sequenced the genome of one of our Phoma strains (F3723) previously identified as having antifungal activity in a high-throughput screen. We found a biosynthetic gene cluster that was predicted to synthesize a cyclic lipodepsipeptide that differs in the amino acid composition compared to Phomafungin. Antifungal activity guided isolation yielded a new compound, BII-Rafflesfungin, the structure of which was determined. CONCLUSIONS: We describe the NRPS-t1PKS cluster 'BIIRfg' compatible with the synthesis of the cyclic lipodepsipeptide BII-Rafflesfungin [HMHDA-L-Ala-L-Glu-L-Asn-L-Ser-L-Ser-D-Ser-D-allo-Thr-Gly]. We report new Stachelhaus codes for Ala, Glu, Asn, Ser, Thr, and Gly. We propose a mechanism for BII-Rafflesfungin biosynthesis, which involves the formation of the lipid part by BIIRfg_PKS followed by activation and transfer of the lipid chain by a predicted AMP-ligase on to the first PCP domain of the BIIRfg_NRPS gene.


Asunto(s)
Antifúngicos/química , Depsipéptidos/química , Proteínas Fúngicas/genética , Saccharomycetales/genética , Secuencia de Aminoácidos , Antifúngicos/metabolismo , Antifúngicos/farmacología , Vías Biosintéticas , Depsipéptidos/biosíntesis , Depsipéptidos/farmacología , Genómica , Estructura Molecular , Familia de Multigenes , Saccharomycetales/metabolismo , Secuenciación Completa del Genoma
13.
Sci Rep ; 9(1): 710, 2019 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-30679518

RESUMEN

We have isolated Hypoculoside, a new glycosidic amino alcohol lipid from the fungus Acremonium sp. F2434 belonging to the order Hypocreales and determined its structure by 2D-NMR (Nuclear Magnetic Resonance) spectroscopy. Hypoculoside has antifungal, antibacterial and cytotoxic activities. Homozygous profiling (HOP) of hypoculoside in Saccharomyces cerevisiae (budding yeast) revealed that several mutants defective in vesicular trafficking and vacuolar protein transport are sensitive to hypoculoside. Staining of budding yeast cells with the styryl dye FM4-64 indicated that hypoculoside damaged the vacuolar structure. Furthermore, the propidium iodide (PI) uptake assay showed that hypoculoside disrupted the plasma membrane integrity of budding yeast cells. Interestingly, the glycosidic moiety of hypoculoside is required for its deleterious effect on growth, vacuoles and plasma membrane of budding yeast cells.


Asunto(s)
Acremonium/química , Antibacterianos/farmacología , Antifúngicos/farmacología , Membrana Celular/química , Citotoxinas/farmacología , Glicósidos/farmacología , Saccharomyces cerevisiae/efectos de los fármacos , Esfingosina/análogos & derivados , Antibacterianos/química , Antifúngicos/química , Bacterias/efectos de los fármacos , Bacterias/crecimiento & desarrollo , Membrana Celular/efectos de los fármacos , Permeabilidad de la Membrana Celular/efectos de los fármacos , Citotoxinas/química , Genes Fúngicos , Glicósidos/química , Saccharomyces cerevisiae/crecimiento & desarrollo , Esfingosina/química , Esfingosina/farmacología , Vacuolas/efectos de los fármacos , Vacuolas/metabolismo
14.
J Biomol Screen ; 7(4): 367-71, 2002 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12230891

RESUMEN

Despite decades of research, malaria remains the world's most deadly parasitic disease. New treatments with novel mechanisms of action are urgently needed. Plasmepsin II is an aspartyl protease that has been validated as an antimalarial therapeutic target enzyme. Although natural products form the basis of most modern antimalarial drugs, no systematic high-throughput screening has been reported against this target. We have designed an effective strategy for carrying out high-throughput screening of an extensive library of natural products that uses a fluorescence resonance energy transfer primary screening assay in tandem with a fluorescence polarization assay. This strategy allows rapid screening of the library coupled with effective discrimination and elimination of false-positive samples and selection of true hits for chemical isolation of inhibitors of plasmepsin II.


Asunto(s)
Antimaláricos/farmacología , Ácido Aspártico Endopeptidasas/antagonistas & inhibidores , Evaluación Preclínica de Medicamentos/métodos , Animales , Ácido Aspártico Endopeptidasas/metabolismo , Transferencia de Energía , Malaria/tratamiento farmacológico , Malaria/parasitología , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/enzimología , Proteínas Protozoarias , Espectrometría de Fluorescencia/métodos
15.
J Nat Prod ; 65(4): 476-80, 2002 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-11975483

RESUMEN

In addition to the sesquiterpene-phenol aureols (1), 6'-chloroaureol (2), and aureol acetate (3), eight indole alkaloids including the new N-3'-ethylaplysinopsin (9) have been isolated from the Jamaican sponge Smenospongia aurea. Makaluvamine O (10), a new member of the pyrroloiminoquinone class, was also isolated. The structures were characterized by spectroscopic methods, and two new derivatives of aureol were prepared to optimize the biological activity. Aureol N,N-dimethyl thiocarbamate (1a) and 6-bromoaplysinopsin (7) exhibit significant antimalarial and antimycobacterial activity in vitro. Compound 6 showed activity against the Plasmodium enzyme plasmepsin II. The 6-bromo-2'-de-N-methylaplysinopsin (6), 6-bromoaplysinopsin (7), and N-3'-ethylaplysinopsin (9) displaced high-affinity [(3)H]antagonist ligands from cloned human serotonin 5-HT(2) receptor subtypes, whereas the other compounds tested did not. Remarkably, the 6-bromo-2'-de-N-methylaplysinopsin (6) showed a > 40-fold selectivity for the 5-HT(2C) subtype over the 5-HT(2A) subtype.


Asunto(s)
Antiinfecciosos/aislamiento & purificación , Antimaláricos/aislamiento & purificación , Poríferos/química , Receptores de Serotonina/efectos de los fármacos , Sesquiterpenos/aislamiento & purificación , Animales , Antiinfecciosos/química , Antiinfecciosos/farmacología , Antimaláricos/química , Antimaláricos/farmacología , Ácido Aspártico Endopeptidasas/metabolismo , Membrana Celular/efectos de los fármacos , Células Cultivadas/efectos de los fármacos , Chlorocebus aethiops , Humanos , Alcaloides Indólicos/química , Alcaloides Indólicos/aislamiento & purificación , Alcaloides Indólicos/farmacología , Jamaica , Conformación Molecular , Estructura Molecular , Resonancia Magnética Nuclear Biomolecular , Proteínas Protozoarias , Pirroles/química , Pirroles/aislamiento & purificación , Pirroles/farmacología , Quinonas/química , Quinonas/aislamiento & purificación , Quinonas/farmacología , Sesquiterpenos/química , Sesquiterpenos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...