Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cancer Res Commun ; 3(11): 2256-2267, 2023 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-37870410

RESUMEN

Long interspersed nuclear element-1 (LINE-1 or L1), the most abundant family of autonomous retrotransposons occupying over 17% of human DNA, is epigenetically silenced in normal tissues by the mechanisms involving p53 but is frequently derepressed in cancer, suggesting that L1-encoded proteins may act as tumor-associated antigens recognized by the immune system. In this study, we established an immunoassay to detect circulating autoantibodies against L1 proteins in human blood. Using this assay in >2,800 individuals with or without cancer, we observed significantly higher IgG titers against L1-encoded ORF1p and ORF2p in patients with lung, pancreatic, ovarian, esophageal, and liver cancers than in healthy individuals. Remarkably, elevated levels of anti-ORF1p-reactive IgG were observed in patients with cancer with disease stages 1 and 2, indicating that the immune response to L1 antigens can occur in the early phases of carcinogenesis. We concluded that the antibody response against L1 antigens could contribute to the diagnosis and determination of immunoreactivity of tumors among cancer types that frequently escape early detection. SIGNIFICANCE: The discovery of autoantibodies against antigens encoded by L1 retrotransposons in patients with five poorly curable cancer types has potential implications for the detection of an ongoing carcinogenic process and tumor immunoreactivity.


Asunto(s)
Neoplasias , Retroelementos , Humanos , Elementos de Nucleótido Esparcido Largo/genética , Neoplasias/genética , Autoanticuerpos/genética , Inmunoglobulina G/genética
2.
Nucleic Acids Res ; 51(21): 11836-11855, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-37855682

RESUMEN

DNA-targeting drugs are widely used for anti-cancer treatment. Many of these drugs cause different types of DNA damage, i.e. alterations in the chemical structure of DNA molecule. However, molecules binding to DNA may also interfere with DNA packing into chromatin. Interestingly, some molecules do not cause any changes in DNA chemical structure but interfere with DNA binding to histones and nucleosome wrapping. This results in histone loss from chromatin and destabilization of nucleosomes, a phenomenon that we call chromatin damage. Although the cellular response to DNA damage is well-studied, the consequences of chromatin damage are not. Moreover, many drugs used to study DNA damage also cause chromatin damage, therefore there is no clarity on which effects are caused by DNA or chromatin damage. In this study, we aimed to clarify this issue. We treated normal and tumor cells with bleomycin, nuclease mimicking drug which cut predominantly nucleosome-free DNA and therefore causes DNA damage in the form of DNA breaks, and CBL0137, which causes chromatin damage without direct DNA damage. We describe similarities and differences between the consequences of DNA and chromatin damage. Both agents were more toxic for tumor than normal cells, but while DNA damage causes senescence in both normal and tumor cells, chromatin damage does not. Both agents activated p53, but chromatin damage leads to the accumulation of higher levels of unmodified p53, which transcriptional activity was similar to or lower than that of p53 activated by DNA damage. Most importantly, we found that while transcriptional changes caused by DNA damage are limited by p53-dependent activation of a small number of p53 targets, chromatin damage activated many folds more genes in p53 independent manner.


Asunto(s)
Cromatina , Daño del ADN , Cromatina/genética , ADN/genética , ADN/metabolismo , Histonas/metabolismo , Nucleosomas , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
3.
bioRxiv ; 2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36711582

RESUMEN

DNA-targeting drugs may damage DNA or chromatin. Many anti-cancer drugs damage both, making it difficult to understand their mechanisms of action. Using molecules causing DNA breaks without altering nucleosome structure (bleomycin) or destabilizing nucleosomes without damaging DNA (curaxin), we investigated the consequences of DNA or chromatin damage in normal and tumor cells. As expected, DNA damage caused p53-dependent growth arrest followed by senescence. Chromatin damage caused higher p53 accumulation than DNA damage; however, growth arrest was p53-independent and did not result in senescence. Chromatin damage activated the transcription of multiple genes, including classical p53 targets, in a p53-independent manner. Although these genes were not highly expressed in basal conditions, they had chromatin organization around the transcription start sites (TSS) characteristic of most highly expressed genes and the highest level of paused RNA polymerase. We hypothesized that nucleosomes around the TSS of these genes were the most sensitive to chromatin damage. Therefore, nucleosome loss upon curaxin treatment would enable transcription without the assistance of sequence-specific transcription factors. We confirmed this hypothesis by showing greater nucleosome loss around the TSS of these genes upon curaxin treatment and activation of a p53-specific reporter in p53-null cells by chromatin-damaging agents but not DNA-damaging agents.

4.
Proc Natl Acad Sci U S A ; 119(49): e2213146119, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36449545

RESUMEN

Activation of endogenous retrotransposons frequently occurs in cancer cells and contributes to tumor genomic instability. To test whether inhibition of retrotranspositions has an anticancer effect, we used treatment with the nucleoside reverse transcriptase inhibitor (NRTI) stavudine (STV) in mouse cancer models, MMTV-HER2/Neu and Th-MYCN, that spontaneously develop breast cancer and neuroblastoma, respectively. In both cases, STV in drinking water did not affect tumor incidence nor demonstrate direct antitumor effects. However, STV dramatically extended progression-free survival in both models following an initial complete response to chemotherapy. To approach the mechanism underlying this phenomenon, we analyzed the effect of NRTI on the selection of treatment-resistant variants in tumor cells in culture. Cultivation of mouse breast carcinoma 4T1 in the presence of STV dramatically reduced the frequency of cells capable of surviving treatment with anticancer drugs. Global transcriptome analysis demonstrated that the acquisition of drug resistance by 4T1 cells was accompanied by an increase in the constitutive activity of interferon type I and NF-κB pathways and an elevated expression of LINE-1 elements, which are known to induce inflammatory responses via their products of reverse transcription. Treatment with NRTI reduced NF-κB activity and reverted drug resistance. Furthermore, the inducible expression of LINE-1 stimulated inflammatory response and increased the frequency of drug-resistant variants in a tumor cell population. These results indicate a mechanism by which retrotransposon desilencing can stimulate tumor cell survival during treatment and suggest reverse transcriptase inhibition as a potential therapeutic approach for targeting the development of drug-resistant cancers.


Asunto(s)
Retroelementos , Inhibidores de la Transcriptasa Inversa , Animales , Ratones , Inhibidores de la Transcriptasa Inversa/farmacología , Retroelementos/genética , FN-kappa B , Resistencia a Antineoplásicos/genética , Elementos de Nucleótido Esparcido Largo
5.
Int J Mol Sci ; 23(13)2022 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-35806255

RESUMEN

Interferon (IFN) signaling resulting from external or internal inflammatory processes initiates the rapid release of cytokines and chemokines to target viral or bacterial invasion, as well as cancer and other diseases. Prolonged exposure to IFNs, or the overexpression of other cytokines, leads to immune exhaustion, enhancing inflammation and leading to the persistence of infection and promotion of disease. Hence, to control and stabilize an excessive immune response, approaches for the management of inflammation are required. The potential use of peptides as anti-inflammatory agents has been previously demonstrated. Our team discovered, and previously published, a 9-amino-acid cyclic peptide named ALOS4 which exhibits anti-cancer properties in vivo and in vitro. We suggested that the anti-cancer effect of ALOS4 arises from interaction with the immune system, possibly through the modulation of inflammatory processes. Here, we show that treatment with ALOS4 decreases basal cytokine levels in mice with chronic inflammation and prolongs the lifespan of mice with acute systemic inflammation induced by irradiation. We also show that pretreatment with ALOS4 reduces the expression of IFN alpha, IFN lambda, and selected interferon-response genes triggered by polyinosinic-polycytidylic acid (Poly I:C), a synthetic analog of viral double-stranded RNA, while upregulating the expression of other genes with antiviral activity. Hence, we conclude that ALOS4 does not prevent IFN signaling, but rather supports the antiviral response by upregulating the expression of interferon-response genes in an interferon-independent manner.


Asunto(s)
Interferón-alfa , Interferones , Animales , Antivirales/farmacología , Citocinas/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/genética , Inflamación/metabolismo , Interferón-alfa/genética , Interferón-alfa/farmacología , Interferones/genética , Ratones , Poli I-C/farmacología
6.
Clin Cancer Res ; 27(15): 4338-4352, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-33994371

RESUMEN

PURPOSE: We investigated whether targeting chromatin stability through a combination of the curaxin CBL0137 with the histone deacetylase (HDAC) inhibitor, panobinostat, constitutes an effective multimodal treatment for high-risk neuroblastoma. EXPERIMENTAL DESIGN: The effects of the drug combination on cancer growth were examined in vitro and in animal models of MYCN-amplified neuroblastoma. The molecular mechanisms of action were analyzed by multiple techniques including whole transcriptome profiling, immune deconvolution analysis, immunofluorescence, flow cytometry, pulsed-field gel electrophoresis, assays to assess cell growth and apoptosis, and a range of cell-based reporter systems to examine histone eviction, heterochromatin transcription, and chromatin compaction. RESULTS: The combination of CBL0137 and panobinostat enhanced nucleosome destabilization, induced an IFN response, inhibited DNA damage repair, and synergistically suppressed cancer cell growth. Similar synergistic effects were observed when combining CBL0137 with other HDAC inhibitors. The CBL0137/panobinostat combination significantly delayed cancer progression in xenograft models of poor outcome high-risk neuroblastoma. Complete tumor regression was achieved in the transgenic Th-MYCN neuroblastoma model which was accompanied by induction of a type I IFN and immune response. Tumor transplantation experiments further confirmed that the presence of a competent adaptive immune system component allowed the exploitation of the full potential of the drug combination. CONCLUSIONS: The combination of CBL0137 and panobinostat is effective and well-tolerated in preclinical models of aggressive high-risk neuroblastoma, warranting further preclinical and clinical investigation in other pediatric cancers. On the basis of its potential to boost IFN and immune responses in cancer models, the drug combination holds promising potential for addition to immunotherapies.


Asunto(s)
Carbazoles/administración & dosificación , Carbazoles/farmacología , Cromatina/efectos de los fármacos , Inhibidores de Histona Desacetilasas/administración & dosificación , Inhibidores de Histona Desacetilasas/farmacología , Neuroblastoma/tratamiento farmacológico , Panobinostat/administración & dosificación , Panobinostat/farmacología , Animales , Combinación de Medicamentos , Evaluación Preclínica de Medicamentos , Ratones , Células Tumorales Cultivadas
7.
Cell Metab ; 29(4): 871-885.e5, 2019 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-30853213

RESUMEN

Mice deficient for SIRT6 exhibit a severely shortened lifespan, growth retardation, and highly elevated LINE1 (L1) activity. Here we report that SIRT6-deficient cells and tissues accumulate abundant cytoplasmic L1 cDNA, which triggers strong type I interferon response via activation of cGAS. Remarkably, nucleoside reverse-transcriptase inhibitors (NRTIs), which inhibit L1 retrotransposition, significantly improved health and lifespan of SIRT6 knockout mice and completely rescued type I interferon response. In tissue culture, inhibition of L1 with siRNA or NRTIs abrogated type I interferon response, in addition to a significant reduction of DNA damage markers. These results indicate that L1 activation contributes to the pathologies of SIRT6 knockout mice. Similarly, L1 transcription, cytoplasmic cDNA copy number, and type I interferons were elevated in the wild-type aged mice. As sterile inflammation is a hallmark of aging, we propose that modulating L1 activity may be an important strategy for attenuating age-related pathologies.


Asunto(s)
Inflamación/metabolismo , Proteínas de Unión al ARN/metabolismo , Sirtuinas/metabolismo , Factores de Edad , Animales , Didesoxinucleótidos/administración & dosificación , Didesoxinucleótidos/farmacología , Femenino , Masculino , Ratones , Ratones Endogámicos , Ratones Noqueados , Proteínas de Unión al ARN/antagonistas & inhibidores , Sirtuinas/deficiencia , Estavudina/administración & dosificación , Estavudina/farmacología , Nucleótidos de Timina/administración & dosificación , Nucleótidos de Timina/farmacología , Zidovudina/administración & dosificación , Zidovudina/análogos & derivados , Zidovudina/farmacología
8.
J Clin Invest ; 128(10): 4682-4696, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30198908

RESUMEN

Polyamine inhibition for cancer therapy is, conceptually, an attractive approach but has yet to meet success in the clinical setting. The aryl hydrocarbon receptor (AHR) is the central transcriptional regulator of the xenobiotic response. Our study revealed that AHR also positively regulates intracellular polyamine production via direct transcriptional activation of 2 genes, ODC1 and AZIN1, which are involved in polyamine biosynthesis and control, respectively. In patients with multiple myeloma (MM), AHR levels were inversely correlated with survival, suggesting that AHR inhibition may be beneficial for the treatment of this disease. We identified clofazimine (CLF), an FDA-approved anti-leprosy drug, as a potent AHR antagonist and a suppressor of polyamine biosynthesis. Experiments in a transgenic model of MM (Vk*Myc mice) and in immunocompromised mice bearing MM cell xenografts revealed high efficacy of CLF comparable to that of bortezomib, a first-in-class proteasome inhibitor used for the treatment of MM. This study identifies a previously unrecognized regulatory axis between AHR and polyamine metabolism and reveals CLF as an inhibitor of AHR and a potentially clinically relevant anti-MM agent.


Asunto(s)
Poliaminas Biogénicas/biosíntesis , Clofazimina/farmacología , Mieloma Múltiple , Proteínas de Neoplasias , Neoplasias Experimentales , Receptores de Hidrocarburo de Aril/antagonistas & inhibidores , Animales , Línea Celular Tumoral , Células HEK293 , Humanos , Ratones , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/genética , Mieloma Múltiple/metabolismo , Mieloma Múltiple/patología , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/genética , Neoplasias Experimentales/metabolismo , Neoplasias Experimentales/patología , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/metabolismo
9.
Elife ; 72018 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-29400649

RESUMEN

Cellular responses to the loss of genomic stability are well-established, while how mammalian cells respond to chromatin destabilization is largely unknown. We previously found that DNA demethylation on p53-deficient background leads to transcription of repetitive heterochromatin elements, followed by an interferon response, a phenomenon we named TRAIN (Transcription of Repeats Activates INterferon). Here, we report that curaxin, an anticancer small molecule, destabilizing nucleosomes via disruption of histone/DNA interactions, also induces TRAIN. Furthermore, curaxin inhibits oncogene-induced transformation and tumor growth in mice in an interferon-dependent manner, suggesting that anticancer activity of curaxin, previously attributed to p53-activation and NF-kappaB-inhibition, may also involve induction of interferon response to epigenetic derepression of the cellular 'repeatome'. Moreover, we observed that another type of drugs decondensing chromatin, HDAC inhibitor, also induces TRAIN. Thus, we proposed that TRAIN may be one of the mechanisms ensuring epigenetic integrity of mammalian cells via elimination of cells with desilenced chromatin.


Asunto(s)
Cromatina/metabolismo , Metilación de ADN , Inestabilidad Genómica , Interferones/metabolismo , Transcripción Genética , Animales , Antineoplásicos/metabolismo , Células Cultivadas , Inhibidores de Histona Desacetilasas/metabolismo , Humanos , Ratones
10.
Aging (Albany NY) ; 9(8): 1867-1884, 2017 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-28768895

RESUMEN

Constitutive p16Ink4a expression, along with senescence-associated ß-galactosidase (SAßG), are commonly accepted biomarkers of senescent cells (SCs). Recent reports attributed improvement of the healthspan of aged mice following p16Ink4a-positive cell killing to the eradication of accumulated SCs. However, detection of p16Ink4a/SAßG-positive macrophages in the adipose tissue of old mice and in the peritoneal cavity of young animals following injection of alginate-encapsulated SCs has raised concerns about the exclusivity of these markers for SCs. Here we report that expression of p16Ink4a and SAßG in macrophages is acquired as part of a physiological response to immune stimuli rather than through senescence, consistent with reports that p16Ink4a plays a role in macrophage polarization and response. Unlike SCs, p16Ink4a/SAßG-positive macrophages can be induced in p53-null mice. Macrophages, but not mesenchymal SCs, lose both markers in response to M1- [LPS, IFN-α, Poly(I:C)] and increase their expression in response to M2-inducing stimuli (IL-4, IL-13). Moreover, interferon-inducing agent Poly(I:C) dramatically reduced p16Ink4a expression in vivo in our alginate bead model and in the adipose tissue of aged mice. These observations suggest that the antiaging effects following eradication of p16Ink4a-positive cells may not be solely attributed to SCs but also to non-senescent p16Ink4a/SAßG-positive macrophages.


Asunto(s)
Proliferación Celular , Senescencia Celular , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Macrófagos Peritoneales/enzimología , beta-Galactosidasa/metabolismo , Tejido Adiposo/citología , Envejecimiento/metabolismo , Animales , Biomarcadores/metabolismo , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Senescencia Celular/efectos de los fármacos , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Genotipo , Factores Inmunológicos/farmacología , Activación de Macrófagos , Macrófagos Peritoneales/efectos de los fármacos , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Ratones Endogámicos C57BL , Ratones Transgénicos , Fenotipo , Transducción de Señal , Factores de Tiempo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
11.
Aging (Albany NY) ; 9(3): 615-626, 2017 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-28325885

RESUMEN

The development of healthspan-extending pharmaceuticals requires quantitative estimation of age-related progressive physiological decline. In humans, individual health status can be quantitatively assessed by means of a frailty index (FI), a parameter which reflects the scale of accumulation of age-related deficits. However, adaptation of this methodology to animal models is a challenging task since it includes multiple subjective parameters. Here we report a development of a quantitative non-invasive procedure to estimate biological age of an individual animal by creating physiological frailty index (PFI). We demonstrated the dynamics of PFI increase during chronological aging of male and female NIH Swiss mice. We also demonstrated acceleration of growth of PFI in animals placed on a high fat diet, reflecting aging acceleration by obesity and provide a tool for its quantitative assessment. Additionally, we showed that PFI could reveal anti-aging effect of mTOR inhibitor rapatar (bioavailable formulation of rapamycin) prior to registration of its effects on longevity. PFI revealed substantial sex-related differences in normal chronological aging and in the efficacy of detrimental (high fat diet) or beneficial (rapatar) aging modulatory factors. Together, these data introduce PFI as a reliable, non-invasive, quantitative tool suitable for testing potential anti-aging pharmaceuticals in pre-clinical studies.


Asunto(s)
Envejecimiento/fisiología , Longevidad/fisiología , Animales , Dieta Alta en Grasa , Femenino , Estado de Salud , Masculino , Ratones , Caracteres Sexuales
12.
Methods Mol Biol ; 1534: 121-125, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27812873

RESUMEN

Metabolic flux analysis (MFA) is a comprehensive technique that allows researchers to create a map of cellular metabolic state. This method is extensively studied in the literature in the context of the metabolism of various cancer cells, and it normally utilizes a labeled substrate that is absorbed by the cells, the levels of the incorporation are measured by mass spectrometry (MS) within the pool of metabolites and computational estimation is performed. Here, we propose the use of this assay to study metabolic changes that occur in oncogene-induced senescence (OIS) of normal human fibroblasts (Wi38) versus those in the state of proliferation/quiescence.


Asunto(s)
Senescencia Celular , Metabolismo Energético , Fibroblastos/metabolismo , Glucosa/metabolismo , Oncogenes/genética , Isótopos de Carbono , Senescencia Celular/genética , Cromatografía de Gases y Espectrometría de Masas , Humanos , Marcaje Isotópico , Ácido Láctico/metabolismo , Metaboloma , Metabolómica/métodos
13.
Aging (Albany NY) ; 8(7): 1294-315, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27391570

RESUMEN

Senescent cells (SCs) have been considered a source of age-related chronic sterile systemic inflammation and a target for anti-aging therapies. To understand mechanisms controlling the amount of SCs, we analyzed the phenomenon of rapid clearance of human senescent fibroblasts implanted into SCID mice, which can be overcome when SCs were embedded into alginate beads preventing them from immunocyte attack. To identify putative SC killers, we analyzed the content of cell populations in lavage and capsules formed around the SC-containing beads. One of the major cell types attracted by secretory factors of SCs was a subpopulation of macrophages characterized by p16(Ink4a) gene expression and ß-galactosidase activity at pH6.0 (ß-gal(pH6)), thus resembling SCs. Consistently, mice with p16(Ink4a) promoter-driven luciferase, developed bright luminescence of their peritoneal cavity within two weeks following implantation of SCs embedded in alginate beads. p16(Ink4a)/ß-gal(pH6)-expressing cells had surface biomarkers of macrophages F4/80 and were sensitive to liposomal clodronate used for the selective killing of cells capable of phagocytosis. At the same time, clodronate failed to kill bona fide SCs generated in vitro by genotoxic stress. Old mice with elevated proportion of p16(Ink4a)/ß-gal(pH6)-positive cells in their tissues demonstrated reduction of both following systemic clodronate treatment, indicating that a significant proportion of cells previously considered to be SCs are actually a subclass of macrophages. These observations point at a significant role of p16(Ink4a)/ß-gal(pH6)-positive macrophages in aging, which previously was attributed solely to SCs. They require re-interpretation of the mechanisms underlying rejuvenating effects following eradication of p16(Ink4a)/ß-gal(pH6)-positive cells and reconsideration of potential cellular target for anti-aging treatment.


Asunto(s)
Envejecimiento/metabolismo , Senescencia Celular/fisiología , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Macrófagos/metabolismo , beta-Galactosidasa/metabolismo , Animales , Liposomas/metabolismo , Ratones
14.
Proc Natl Acad Sci U S A ; 112(49): 15154-9, 2015 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-26575629

RESUMEN

Recent studies have demonstrated abundant transcription of a set of noncoding RNAs (ncRNAs) preferentially within tumors as opposed to normal tissue. Using an approach from statistical physics, we quantify global transcriptome-wide motif use for the first time, to our knowledge, in human and murine ncRNAs, determining that most have motif use consistent with the coding genome. However, an outlier subset of tumor-associated ncRNAs, typically of recent evolutionary origin, has motif use that is often indicative of pathogen-associated RNA. For instance, we show that the tumor-associated human repeat human satellite repeat II (HSATII) is enriched in motifs containing CpG dinucleotides in AU-rich contexts that most of the human genome and human adapted viruses have evolved to avoid. We demonstrate that a key subset of these ncRNAs functions as immunostimulatory "self-agonists" and directly activates cells of the mononuclear phagocytic system to produce proinflammatory cytokines. These ncRNAs arise from endogenous repetitive elements that are normally silenced, yet are often very highly expressed in cancers. We propose that the innate response in tumors may partially originate from direct interaction of immunogenic ncRNAs expressed in cancer cells with innate pattern recognition receptors, and thereby assign a previously unidentified danger-associated function to a set of dark matter repetitive elements. These findings potentially reconcile several observations concerning the role of ncRNA expression in cancers and their relationship to the tumor microenvironment.


Asunto(s)
Neoplasias/genética , ARN no Traducido/inmunología , Animales , Humanos , Inmunidad Innata , Ratones , Neoplasias/inmunología
15.
Mol Cell ; 53(6): 916-928, 2014 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-24613345

RESUMEN

Reactive oxygen species (ROS) activate NF-E2-related transcription factor 2 (Nrf2), a key transcriptional regulator driving antioxidant gene expression and protection from oxidant injury. Here, we report that in response to elevation of intracellular ROS above a critical threshold, Nrf2 stimulates expression of transcription Kruppel-like factor 9 (Klf9), resulting in further Klf9-dependent increases in ROS and subsequent cell death. We demonstrated that Klf9 independently causes increased ROS levels in various types of cultured cells and in mouse tissues and is required for pathogenesis of bleomycin-induced pulmonary fibrosis in mice. Mechanistically, Klf9 binds to the promoters and alters the expression of several genes involved in the metabolism of ROS, including suppression of thioredoxin reductase 2, an enzyme participating in ROS clearance. Our data reveal an Nrf2-dependent feedforward regulation of ROS and identify Klf9 as a ubiquitous regulator of oxidative stress and lung injury.


Asunto(s)
Regulación de la Expresión Génica , Factores de Transcripción de Tipo Kruppel/genética , Factor 2 Relacionado con NF-E2/genética , Estrés Oxidativo , Fibrosis Pulmonar/genética , Animales , Sitios de Unión , Bleomicina , Línea Celular Tumoral , Genes Reporteros , Humanos , Factores de Transcripción de Tipo Kruppel/metabolismo , Luciferasas/genética , Luciferasas/metabolismo , Pulmón/metabolismo , Pulmón/patología , Ratones , Factor 2 Relacionado con NF-E2/metabolismo , Células 3T3 NIH , Regiones Promotoras Genéticas , Unión Proteica , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/patología , Especies Reactivas de Oxígeno , Transducción de Señal
16.
Proc Natl Acad Sci U S A ; 110(20): E1857-66, 2013 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-23630282

RESUMEN

Vertebrate Toll-like receptor 5 (TLR5) recognizes bacterial flagellin proteins and activates innate immune responses to motile bacteria. In addition, activation of TLR5 signaling can inhibit growth of TLR5-expressing tumors and protect normal tissues from radiation and ischemia-reperfusion injuries. To understand the mechanisms behind these phenomena at the organismal level, we assessed nuclear factor kappa B (NF-κB) activation (indicative of TLR5 signaling) in tissues and cells of mice treated with CBLB502, a pharmacologically optimized flagellin derivative. This identified the liver and gastrointestinal tract as primary CBLB502 target organs. In particular, liver hepatocytes were the main cell type directly and specifically responding to systemic administration of CBLB502 but not to that of the TLR4 agonist LPS. To assess CBLB502 impact on other pathways, we created multireporter mice with hepatocytes transduced in vivo with reporters for 46 inducible transcription factor families and found that along with NF-κB, CBLB502 strongly activated STAT3-, phenobarbital-responsive enhancer module (PREM), and activator protein 1 (AP-1-) -driven pathways. Livers of CBLB502-treated mice displayed induction of numerous immunomodulatory factors and massive recruitment of various types of immune cells. This led to inhibition of growth of liver metastases of multiple tumors regardless of their TLR5 status. The changed liver microenvironment was not, however, hepatotoxic, because CBLB502 induced resistance to Fas-mediated apoptosis in normal liver cells. Temporary occlusion of liver blood circulation prevented CBLB502 from protecting hematopoietic progenitors in lethally irradiated mice, indicating involvement of a factor secreted by responding liver cells. These results define the liver as the key mediator of TLR5-dependent effects in vivo and suggest clinical applications for TLR5 agonists as hepatoprotective and antimetastatic agents.


Asunto(s)
Hígado/metabolismo , Péptidos/farmacología , Factor de Transcripción STAT3/metabolismo , Receptor Toll-Like 5/agonistas , Animales , Anticarcinógenos/farmacología , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Neoplasias del Colon/metabolismo , Femenino , Citometría de Flujo , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Células Asesinas Naturales/metabolismo , Hígado/efectos de los fármacos , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Trasplante de Neoplasias , Neutrófilos/metabolismo , Protectores contra Radiación/farmacología , Transducción de Señal , Receptor fas/metabolismo
17.
Proc Natl Acad Sci U S A ; 110(1): E89-98, 2013 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-23236145

RESUMEN

Large parts of mammalian genomes are transcriptionally inactive and enriched with various classes of interspersed and tandem repeats. Here we show that the tumor suppressor protein p53 cooperates with DNA methylation to maintain silencing of a large portion of the mouse genome. Massive transcription of major classes of short, interspersed nuclear elements (SINEs) B1 and B2, both strands of near-centromeric satellite DNAs consisting of tandem repeats, and multiple species of noncoding RNAs was observed in p53-deficient but not in p53 wild-type mouse fibroblasts treated with the DNA demethylating agent 5-aza-2'-deoxycytidine. The abundance of these transcripts exceeded the level of ß-actin mRNA by more than 150-fold. Accumulation of these transcripts, which are capable of forming double-stranded RNA (dsRNA), was accompanied by a strong, endogenous, apoptosis-inducing type I IFN response. This phenomenon, which we named "TRAIN" (for "transcription of repeats activates interferon"), was observed in spontaneous tumors in two models of cancer-prone mice, presumably reflecting naturally occurring DNA hypomethylation and p53 inactivation in cancer. These observations suggest that p53 and IFN cooperate to prevent accumulation of cells with activated repeats and provide a plausible explanation for the deregulation of IFN function frequently seen in tumors. Overall, this work reveals roles for p53 and IFN that are key for genetic stability and therefore relevant to both tumorigenesis and the evolution of species.


Asunto(s)
Metilación de ADN , Represión Epigenética/fisiología , Interferón Tipo I/metabolismo , ARN no Traducido/genética , Secuencias Repetitivas de Ácidos Nucleicos/genética , Proteína p53 Supresora de Tumor/genética , Actinas/genética , Animales , Azacitidina/análogos & derivados , Biología Computacional , Decitabina , Represión Epigenética/genética , Ratones , Análisis por Micromatrices , Análisis de Secuencia de ARN , Proteína p53 Supresora de Tumor/deficiencia
18.
Aging (Albany NY) ; 4(12): 917-22, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23249808

RESUMEN

The down-regulation of dominant oncogenes, including C-MYC, in tumor cells often leads to the induction of senescence via mechanisms that are not completely identified. In the current study, we demonstrate that MYC-depleted melanoma cells undergo extensive DNA damage that is caused by the underexpression of thymidylate synthase (TS) and ribonucleotide reductase (RR) and subsequent depletion of deoxyribonucleoside triphosphate pools. Simultaneous genetic inhibition of TS and RR in melanoma cells induced DNA damage and senescence phenotypes very similar to the ones caused by MYC-depletion. Reciprocally, overexpression of TS and RR in melanoma cells or addition of deoxyribo-nucleosides to culture media substantially inhibited DNA damage and senescence-associated phenotypes caused by C-MYC depletion. Our data demonstrate the essential role of TS and RR in C-MYC-dependent suppression of senescence in melanoma cells.


Asunto(s)
Senescencia Celular/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Desoxirribonucleósidos/farmacología , Melanoma/enzimología , Proteínas Proto-Oncogénicas c-myc/metabolismo , Ribonucleótido Reductasas/metabolismo , Neoplasias Cutáneas/enzimología , Timidilato Sintasa/metabolismo , Línea Celular Tumoral , Regulación hacia Abajo , Regulación Neoplásica de la Expresión Génica , Genotipo , Humanos , Melanoma/genética , Melanoma/patología , Fenotipo , Proteínas Proto-Oncogénicas c-myc/genética , Interferencia de ARN , Ribonucleósido Difosfato Reductasa/metabolismo , Ribonucleótido Reductasas/genética , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/patología , Timidilato Sintasa/genética , Factores de Tiempo , Transfección , Proteínas Supresoras de Tumor/metabolismo
19.
Cell Cycle ; 9(7): 1434-43, 2010 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-20404530

RESUMEN

It has been shown that genetic inhibition of p53 leads to enhanced proliferation of hematopoietic stem cells (HSCs). This could, in theory, contribute to the increased frequency of tumor development observed in p53-deficient mice and humans. In our previous work, we identified chemical p53 inhibitors (PFTs) that suppress the transactivation function of p53 and protect cultured cells and mice from death induced by gamma irradiation (IR). Here we found that when applied to bone marrow cells in vitro or injected into mice, PFTb impeded IR-induced reduction of hematopoietic stem cell (HSC) and hematopoietic progenitor cell (HPC) population sizes. In addition, we showed that PFTb stimulated HSC and HPC proliferation in the absence of IR in vitro and in vivo and mobilized HSCs to the peripheral blood. Importantly, however, PFTb treatment did not affect the timing or frequency of tumor development in irradiated p53 heterozygous mice used as a model for determination of carcinogenicity. Thus, although PFTb administration led to increased numbers of HSCs and HPCs, it was not carcinogenic in mice. These findings suggest that chemical p53 inhibitors may be clinically useful as safe and effective stimulators of hematopoiesis.


Asunto(s)
Benzotiazoles/farmacología , Células Madre Hematopoyéticas/citología , Neoplasias/patología , Tolueno/análogos & derivados , Proteína p53 Supresora de Tumor/antagonistas & inhibidores , Animales , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Rayos gamma , Células Madre Hematopoyéticas/efectos de los fármacos , Ratones , Ratones Noqueados , Neoplasias/metabolismo , Tolueno/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...