Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biochemistry (Mosc) ; 84(4): 370-379, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31228928

RESUMEN

This review focuses on recent experimental data obtained by site-directed mutagenesis of the reaction center in purple nonsulfur bacteria. The role of axial ligation of (bacterio)chlorophylls in the regulation of spectral and redox properties of these pigments, as well as correlation between the structure of chromophores and nature of their ligands, are discussed. Cofactor ligation in various types of reaction centers is compared, and possible reasons for observed differences are examined in the light of modern ideas on the evolution of photosynthesis.


Asunto(s)
Proteínas Bacterianas/metabolismo , Bacterioclorofilas/metabolismo , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Proteobacteria/metabolismo , Proteínas Bacterianas/genética , Bacterioclorofilas/química , Evolución Molecular , Ligandos , Mutagénesis Sitio-Dirigida , Fotosíntesis , Proteínas del Complejo del Centro de Reacción Fotosintética/genética , Rhodobacter sphaeroides/metabolismo
2.
Biochemistry (Mosc) ; 78(1): 60-7, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23379560

RESUMEN

Primary charge separation dynamics in four mutant reaction centers (RCs) of the purple bacterium Rhodobacter sphaeroides with increased midpoint potential of the primary electron donor P (M160LH, L131LH, M197FH, and M160LH + L131LH + M197FH) have been studied by femtosecond transient absorption spectroscopy at room temperature. The decay of the excited singlet state in the wild-type and mutant RCs is complex and has two main exponential components, which indicates heterogeneity of electron transfer rates or the presence of reverse electron transfer reactions. The radical anion band of monomeric bacteriochlorophyll B(A) at 1020 nm was first observed in transient absorbance difference spectra of single mutants. This band remains visible, although with somewhat reduced amplitude, even at delays up to tens of picoseconds when stimulated emission is absent and the reaction centers are in the P(+)H(A)(-) state. The presence of this band in this time period indicates the existence of thermodynamic equilibrium between the P(+)B(A)(-)H(A) and P(+)B(A)H(A)(-) states. The data give grounds for assuming that the value of the energy difference between the states P*, P(+)B(A)(-)H(A), and P(+)B(A)H(A)(-) at early times is of the same order of magnitude as the energy kT at room temperature. Besides, monomeric bacteriochlorophyll B(A) is found to be an immediate electron acceptor in the single mutant RCs, where electron transfer is hampered due to increased energy of the P(+)B(A)(-) state with respect to P*.


Asunto(s)
Electrones , Mutación , Proteínas del Complejo del Centro de Reacción Fotosintética/genética , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Rhodobacter sphaeroides , Transporte de Electrón , Oxidación-Reducción , Proteínas del Complejo del Centro de Reacción Fotosintética/química , Rhodobacter sphaeroides/genética , Rhodobacter sphaeroides/metabolismo , Espectrofotometría Ultravioleta , Temperatura , Factores de Tiempo
3.
Biochim Biophys Acta ; 1817(8): 1407-17, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22365928

RESUMEN

To explore the influence of the I(L177)H single mutation on the properties of the nearest bacteriochlorophylls (BChls), three reaction centers (RCs) bearing double mutations were constructed in the photosynthetic purple bacterium Rhodobacter sphaeroides, and their properties and pigment content were compared with those of the correspondent single mutant RCs. Each pair of the mutations comprised the amino acid substitution I(L177)H and another mutation altering histidine ligand of BChl P(A) or BChl B(B). Contrary to expectations, the double mutation I(L177)H+H(L173)L does not bring about a heterodimer RC but causes a 46nm blue shift of the long-wavelength P absorbance band. The histidine L177 or a water molecule were suggested as putative ligands for P(A) in the RC I(L177)H+H(L173)L although this would imply a reorientation of the His backbone and additional rearrangements in the primary donor environment or even a repositioning of the BChl dimer. The crystal structure of the mutant I(L177)H reaction center determined to a resolution of 2.9Å shows changes at the interface region between the BChl P(A) and the monomeric BChl B(B). Spectral and pigment analysis provided evidence for ß-coordination of the BChl B(B) in the double mutant RC I(L177)H+H(M182)L and for its hexacoordination in the mutant reaction center I(L177)H. Computer modeling suggests involvement of two water molecules in the ß-coordination of the BChl B(B). Possible structural consequences of the L177 mutation affecting the coordination of the two BChls P(A) and B(B) are discussed. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.


Asunto(s)
Bacterioclorofilas/química , Proteínas del Complejo del Centro de Reacción Fotosintética/química , Rhodobacter sphaeroides/metabolismo , Cristalografía por Rayos X , Mutagénesis Sitio-Dirigida , Potenciometría
4.
Biochemistry (Mosc) ; 76(13): 1465-83, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22339599

RESUMEN

During photosynthesis light energy is converted into energy of chemical bonds through a series of electron and proton transfer reactions. Over the first ultrafast steps of photosynthesis that take place in the reaction center (RC) the quantum efficiency of the light energy transduction is nearly 100%. Compared to the plant and cyanobacterial photosystems, bacterial RCs are well studied and have relatively simple structure. Therefore they represent a useful model system both for manipulating of the electron transfer parameters to study detailed mechanisms of its separate steps as well as to investigate the common principles of the photosynthetic RC structure, function, and evolution. This review is focused on the research papers devoted to chemical and genetic modifications of the RCs of purple bacteria in order to study principles and mechanisms of their functioning. Investigations of the last two decades show that the maximal rates of the electron transfer reactions in the RC depend on a number of parameters. Chemical structure of the cofactors, distances between them, their relative orientation, and interactions to each other are of great importance for this process. By means of genetic and spectral methods, it was demonstrated that RC protein is also an essential factor affecting the efficiency of the photochemical charge separation. Finally, some of conservative water molecules found in RC not only contribute to stability of the protein structure, but are directly involved in the functioning of the complex.


Asunto(s)
Proteínas Bacterianas/química , Proteínas del Complejo del Centro de Reacción Fotosintética/química , Sustitución de Aminoácidos , Apoproteínas/química , Apoproteínas/genética , Proteínas Bacterianas/genética , Coenzimas/química , Transporte de Electrón , Mutagénesis Sitio-Dirigida , Operón , Proteínas del Complejo del Centro de Reacción Fotosintética/genética , Proteobacteria/enzimología , Proteobacteria/genética , Termodinámica
5.
Biochemistry (Mosc) ; 74(4): 452-60, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19463100

RESUMEN

Mutant reaction centers (RC) from Rhodobacter sphaeroides have been studied in which histidine L153, the axial ligand of the central Mg atom of bacteriochlorophyll B(A) molecule, was substituted by cysteine, methionine, tyrosine, or leucine. None of the mutations resulted in conversion of the bacteriochlorophyll B(A) to a bacteriopheophytin molecule. Isolated H(L153)C and H(L153)M RCs demonstrated spectral properties similar to those of the wild-type RC, indicating the ability of cysteine and methionine to serve as stable axial ligands of the Mg atom of bacteriochlorophyll B(A). Because of instability of mutant H(L153)L and H(L153)Y RCs, their properties were studied without isolation of these complexes from the photosynthetic membranes. The most prominent effect of the mutations was observed with substitution of histidine by tyrosine. According to the spectral data and the results of pigment analysis, the B(A) molecule is missing in the H(L153)Y RC. Nevertheless, being associated with the photosynthetic membrane, this RC can accomplish photochemical charge separation with quantum yield of approximately 7% of that characteristic of the wild-type RC. Possible pathways of the primary electron transport in the H(L153)Y RC in absence of photochemically active chromophore are discussed.


Asunto(s)
Sustitución de Aminoácidos , Bacterioclorofilas/metabolismo , Histidina/genética , Magnesio/metabolismo , Mutación , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Rhodobacter sphaeroides/metabolismo , Bacterioclorofilas/química , Bacterioclorofilas/genética , Histidina/metabolismo , Ligandos , Conformación Molecular , Proteínas del Complejo del Centro de Reacción Fotosintética/química , Proteínas del Complejo del Centro de Reacción Fotosintética/genética , Unión Proteica , Rhodobacter sphaeroides/química , Rhodobacter sphaeroides/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...