Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Biomed Eng ; 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39237709

RESUMEN

In mammalian cells, signalling pathways orchestrate cellular growth, differentiation and survival, as well as many other processes that are essential for the proper functioning of cells. Here we describe cutting-edge genetic-engineering technologies for the rewiring of signalling networks in mammalian cells. Specifically, we describe the recombination of native pathway components, cross-kingdom pathway transplantation, and the development of de novo signalling within cells and organelles. We also discuss how, by designing signalling pathways, mammalian cells can acquire new properties, such as the capacity for photosynthesis, the ability to detect cancer and senescent cell markers or to synthesize hormones or metabolites in response to chemical or physical stimuli. We also review the applications of mammalian cells in biocomputing. Technologies for engineering signalling pathways in mammalian cells are advancing basic cellular biology, biomedical research and drug discovery.

2.
Nat Methods ; 19(7): 871-880, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35681062

RESUMEN

Regulation of receptor tyrosine kinase (RTK) activity is necessary for studying cell signaling pathways in health and disease. We developed a generalized approach for engineering RTKs optically controlled with far-red light. We targeted the bacterial phytochrome DrBphP to the cell surface and allowed its light-induced conformational changes to be transmitted across the plasma membrane via transmembrane helices to intracellular RTK domains. Systematic optimization of these constructs has resulted in optically regulated epidermal growth factor receptor, HER2, TrkA, TrkB, FGFR1, IR1, cKIT and cMet, named eDrRTKs. eDrRTKs induced downstream signaling in mammalian cells in tens of seconds. The ability to activate eDrRTKs with far-red light enabled spectral multiplexing with fluorescent probes operating in a shorter spectral range, allowing for all-optical assays. We validated eDrTrkB performance in mice and found that minimally invasive stimulation in the neocortex with penetrating via skull far-red light-induced neural activity, early immediate gene expression and affected sleep patterns.


Asunto(s)
Fitocromo , Animales , Membrana Celular/metabolismo , Luz , Mamíferos , Ratones , Transducción de Señal
3.
Chem Sci ; 11(37): 10019-10034, 2020 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-33209247

RESUMEN

Inhibition of receptor tyrosine kinases (RTKs) by small molecule inhibitors and monoclonal antibodies is used to treat cancer. Conversely, activation of RTKs with their ligands, including growth factors and insulin, is used to treat diabetes and neurodegeneration. However, conventional therapies that rely on injection of RTK inhibitors or activators do not provide spatiotemporal control over RTK signaling, which results in diminished efficiency and side effects. Recently, a number of optogenetic and optochemical approaches have been developed that allow RTK inhibition or activation in cells and in vivo with light. Light irradiation can control RTK signaling non-invasively, in a dosed manner, with high spatio-temporal precision, and without the side effects of conventional treatments. Here we provide an update on the current state of the art of optogenetic and optochemical RTK technologies and the prospects of their use in translational studies and therapy.

4.
J Mol Biol ; 432(13): 3749-3760, 2020 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-32302608

RESUMEN

Optically controlled receptor tyrosine kinases (opto-RTKs) allow regulation of RTK signaling using light. Until recently, the majority of opto-RTKs were activated with blue-green light. Fusing a photosensory core module of Deinococcus radiodurans bacterial phytochrome (DrBphP-PCM) to the kinase domains of neurotrophin receptors resulted in opto-RTKs controlled with light above 650 nm. To expand this engineering approach to RTKs of other families, here we combined the DrBpP-PCM with the cytoplasmic domains of EGFR and FGFR1. The resultant Dr-EGFR and Dr-FGFR1 opto-RTKs are rapidly activated with near-infrared and inactivated with far-red light. The opto-RTKs efficiently trigger ERK1/2, PI3K/Akt, and PLCγ signaling. Absence of spectral crosstalk between the opto-RTKs and green fluorescent protein-based biosensors enables simultaneous Dr-FGFR1 activation and detection of calcium transients. Action mechanism of the DrBphP-PCM-based opto-RTKs is considered using the available RTK structures. DrBphP-PCM represents a versatile scaffold for engineering of opto-RTKs that are reversibly regulated with far-red and near-infrared light.


Asunto(s)
Fitocromo/ultraestructura , Proteínas Tirosina Quinasas Receptoras/ultraestructura , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Técnicas Biosensibles , Deinococcus/química , Deinococcus/genética , Proteínas Fluorescentes Verdes/química , Células HeLa , Humanos , Luz , Sistema de Señalización de MAP Quinasas/efectos de la radiación , Factores de Crecimiento Nervioso/química , Factores de Crecimiento Nervioso/genética , Fosfatidilinositol 3-Quinasas/genética , Fitocromo/química , Fitocromo/genética , Conformación Proteica/efectos de la radiación , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Tirosina Quinasas Receptoras/química , Proteínas Tirosina Quinasas Receptoras/genética , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/química , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Receptores de Factor de Crecimiento Nervioso/química , Receptores de Factor de Crecimiento Nervioso/genética , Transducción de Señal/efectos de la radiación
5.
Front Cell Neurosci ; 13: 474, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31708747

RESUMEN

Understanding how neuronal activity patterns in the brain correlate with complex behavior is one of the primary goals of modern neuroscience. Chemical transmission is the major way of communication between neurons, however, traditional methods of detection of neurotransmitter and neuromodulator transients in mammalian brain lack spatiotemporal precision. Modern fluorescent biosensors for neurotransmitters and neuromodulators allow monitoring chemical transmission in vivo with millisecond precision and single cell resolution. Changes in the fluorescent biosensor brightness occur upon neurotransmitter binding and can be detected using fiber photometry, stationary microscopy and miniaturized head-mounted microscopes. Biosensors can be expressed in the animal brain using adeno-associated viral vectors, and their cell-specific expression can be achieved with Cre-recombinase expressing animals. Although initially fluorescent biosensors for chemical transmission were represented by glutamate biosensors, nowadays biosensors for GABA, acetylcholine, glycine, norepinephrine, and dopamine are available as well. In this review, we overview functioning principles of existing intensiometric and ratiometric biosensors and provide brief insight into the variety of neurotransmitter-binding proteins from bacteria, plants, and eukaryotes including G-protein coupled receptors, which may serve as neurotransmitter-binding scaffolds. We next describe a workflow for development of neurotransmitter and neuromodulator biosensors. We then discuss advanced setups for functional imaging of neurotransmitter transients in the brain of awake freely moving animals. We conclude by providing application examples of biosensors for the studies of complex behavior with the single-neuron precision.

6.
Nat Commun ; 10(1): 1129, 2019 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-30850602

RESUMEN

Optical control over the activity of receptor tyrosine kinases (RTKs) provides an efficient way to reversibly and non-invasively map their functions. We combined catalytic domains of Trk (tropomyosin receptor kinase) family of RTKs, naturally activated by neurotrophins, with photosensory core module of DrBphP bacterial phytochrome to develop opto-kinases, termed Dr-TrkA and Dr-TrkB, reversibly switchable on and off with near-infrared and far-red light. We validated Dr-Trk ability to reversibly light-control several RTK pathways, calcium level, and demonstrated that their activation triggers canonical Trk signaling. Dr-TrkA induced apoptosis in neuroblastoma and glioblastoma, but not in other cell types. Absence of spectral crosstalk between Dr-Trks and blue-light-activatable LOV-domain-based translocation system enabled intracellular targeting of Dr-TrkA independently of its activation, additionally modulating Trk signaling. Dr-Trks have several superior characteristics that make them the opto-kinases of choice for regulation of RTK signaling: high activation range, fast and reversible photoswitching, and multiplexing with visible-light-controllable optogenetic tools.


Asunto(s)
Factores de Crecimiento Nervioso/genética , Neuroglía/efectos de la radiación , Neuronas/efectos de la radiación , Fitocromo/genética , Receptor trkA/genética , Receptor trkB/genética , Animales , Apoptosis/genética , Apoptosis/efectos de la radiación , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Línea Celular Tumoral , Células Epiteliales/citología , Células Epiteliales/metabolismo , Células Epiteliales/efectos de la radiación , Regulación de la Expresión Génica , Células HeLa , Humanos , Rayos Infrarrojos , Fototransducción , Ratones , Factores de Crecimiento Nervioso/metabolismo , Neuroglía/citología , Neuroglía/metabolismo , Neuronas/citología , Neuronas/metabolismo , Optogenética/métodos , Fitocromo/metabolismo , Ingeniería de Proteínas , Receptor trkA/metabolismo , Receptor trkB/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
7.
Chem Soc Rev ; 47(7): 2454-2484, 2018 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-29498733

RESUMEN

Protein kinases are involved in the regulation of many cellular processes including cell differentiation, survival, migration, axon guidance and neuronal plasticity. A growing set of optogenetic tools, termed opto-kinases, allows activation and inhibition of different protein kinases with light. The optogenetic regulation enables fast, reversible and non-invasive manipulation of protein kinase activities, complementing traditional methods, such as treatment with growth factors, protein kinase inhibitors or chemical dimerizers. In this review, we summarize the properties of the existing optogenetic tools for controlling tyrosine kinases and serine-threonine kinases. We discuss how the opto-kinases can be applied for studies of spatial and temporal aspects of protein kinase signaling in cells and organisms. We compare approaches for chemical and optogenetic regulation of protein kinase activity and present guidelines for selection of opto-kinases and equipment to control them with light. We also describe strategies to engineer novel opto-kinases on the basis of various photoreceptors.


Asunto(s)
Optogenética , Proteínas Quinasas/metabolismo , Proteínas Quinasas/efectos de la radiación , Transducción de Señal/efectos de la radiación , Animales , Humanos , Proteínas Quinasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...