Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 8(48): 45566-45577, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38075763

RESUMEN

This study investigated the impact of carbonaceous fillers (carbon black, multiwalled carbon nanotubes, graphene, and highly defective graphene) on aromatic and nonaromatic photopolymer resins' properties, such as viscosity, long-term stability, complex permittivity, curing efficiency, final conversion, storage modulus, heat deflection and glass transition temperatures, network density, and DC resistivity. The presented results also highlight challenges that must be addressed in designing and processing carbonaceous filler-based 3D-printed photopolymer resins. The improved dielectric and electrical properties were closely tied to the dispersion quality and filler-matrix affinity. It favored the enhanced dispersion of anisotropic fillers (nanotubes) in a compatible matrix above their percolation threshold. On the other hand, the dispersed filler worsens printability due to the elevated viscosity and deteriorated penetration depth. Nonetheless, electrical and rheological percolation was found at different filler concentrations. This window of despaired percolation combines highly enhanced conductivity with only mildly increased viscosity and good printability.

2.
R Soc Open Sci ; 10(10): 230829, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37830030

RESUMEN

The hydrothermal method is a cost-effective and eco-friendly route for preparing various nanomaterials. It can use a capping agent, such as a polysaccharide, to govern and define the nanoparticle morphology. Elemental selenium nanostructures (spheres and rods) were synthesized and stabilized using a tailor-made carboxymethyl starch (CMS, degree of substitution = 0.3) under hydrothermal conditions. CMS is particularly convenient because it acts simultaneously as the capping and reducing agent, as verified by several analytical techniques, while the reaction relies entirely on green solvents. Furthermore, the effect of sodium selenite concentration, reaction time and temperature on the nanoparticle size, morphology, microstructure and chemical composition was investigated to identify the ideal synthesis conditions. A pilot experiment demonstrated the feasibility of implementing the synthesized nanoparticles into vat photopolymerization three-dimensional-printed hydrogel carriers based on 2-hydroxyethyl methacrylate (HEMA). When submersed into the water, the subsequent particle release was confirmed by dynamic light scattering (DLS), promising great potential for use in bio-three-dimensional printing and other biomedical applications.

3.
Mater Horiz ; 10(8): 2989-2996, 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37191139

RESUMEN

Frontal polymerization (FP) is a solvent-free, energy-efficient process where a self-propagating polymerization reaction with a characteristic sharp temperature gradient at the front head propagates through the resin to provide the curing conditions. It relies on the enthalpic balance, which spreads the reaction to unreacted resin in the neighborhood. Therefore, the FP is sensitive to the presence of non-reactive volumes, such as boundaries, fillers, or other additives, that retain heat from the front but produce no enthalpy in return. On the other hand, the front's high temperature could be used to initiate other processes, such as foaming, incorporating them into a simple single-step fabrication procedure. This study used silica particles of two different sizes (14 nm and 200-300 nm) in an epoxy-based FP foam as a representative filler to probe the constraints imposed by non-reactive additives. The presence of particles visibly hindered the front propagation, increased the foam density and even corrupted the frontal regime in some cases. We show that preheating or chemical composition changes are viable approaches to address the fillers' adverse effects. Furthermore, we present evidence that the reduced reaction enthalpy caused by silica nanoparticles, was balanced by the lower heat capacity of our model system. At the same time, the front hindrance was attributed to changes in reaction kinetics and the heat distribution around the front. These results set up essential narratives for the design and practical applications of frontally polymerized foams with non-reactive fillers.

4.
J Phys Chem Lett ; 13(49): 11536-11542, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36475701

RESUMEN

In this work, we demonstrate the prospect of chemically synthesizing transition metal (Ni) doped magnetic graphene quantum dots (GQDs) with the sole aim of shedding light on their magnetic properties. Our results show that adsorption of nickel hydroxide on predominantly paramagnetic GQDs reveals antiferromagnetic ordering in the M-T profile around 10 K with change of the spin exchange coupling deviating from J = 1/2 to J = 1, mainly arising from the d-p mixing hybridization between the p orbital of carbon from the GQD and the d orbital of Ni. Furthermore, our results are well complemented by ab initio simulations showing asymmetry of the up and down spins around the Fermi level for nickel hydroxide-doped GQDs with long-range spin polarization. Furthermore, the magnitude of the net magnetic moment generated for doped GQDs on the carbon atoms is found to be site-dependent (surface or edge).

5.
Carbohydr Polym ; 294: 119792, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-35868761

RESUMEN

The study investigates the use of fiber carriers, based on biopolymeric gums as potential candidates for cosmetic and dermatological applications, in particular for skin regeneration. Gum arabic (GA), xanthan gum (XA), and gum karaya (GK) were used as the main gum materials for the fibers, which were prepared by centrifugal spinning from an aqueous solution. These solutions of different mass gum ratios were blended with poly (ethylene oxide) (PEO) for better spinnability. Finally, vitamins E and C were added to selected solutions of gums. The resulting fibers were extensively investigated. The morphology and structure of all fibers were investigated by scanning electron microscopy and Fourier transformed infrared spectroscopy. Most importantly, they were characterized by the release of vitamin E loaded in the fibers using UV-VIS spectroscopy. The presentation will show that the newly prepared fibers from GA and PEO represent a very promising material for cosmetic and dermatologic applications.


Asunto(s)
Goma de Karaya , Vitaminas , Goma Arábiga/química , Goma de Karaya/química , Polietilenglicoles , Regeneración , Piel
6.
J Mater Chem B ; 10(15): 2889-2898, 2022 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-35294510

RESUMEN

Bones represent a superb biomaterial that combines high mechanical stiffness with nutrition delivery to its osteocyte cells through the microscopical Haversian canals and bone canaliculi. Such a structure is hard to reproduce artificially, though. 3D printing delivers an unprecedented shape control of the created objects. Yet the resolution limit of the most common 3D printers is insufficient, lying between tens to hundreds of microns, while more precise 3D printing techniques fail in fabricating larger objects. We present a unique, yet simple and versatile method for preparing hierarchically aligned microporous canals using a biocompatible polymer polylactic acid (PLA) with their structure controlled at the submicron to macro scale. The layout was inspired by the microscopical Haversian canals and bone canaliculi of cortical bone. This procedure takes advantage of the PLA complex crystalline behavior, which was pre-oriented by 3D printing, orientedly crystallized in CO2, foamed, and cryo-shrunk. The canal formation was assessed via WAXS, FTIR spectroscopy, and DSC and complemented by the evaluation of mechanical properties, biocompatibility, and directionally selective capillary transport in the final structure. The fine dimensions of the canals unmatched by the common 3D printing techniques capable of making macroscale objects combined with the abovementioned properties represent promising potential for various applications, such as advanced cell-supporting designs with a built-in nutrition function.


Asunto(s)
Poliésteres , Andamios del Tejido , Materiales Biocompatibles/química , Poliésteres/química , Impresión Tridimensional , Andamios del Tejido/química
7.
Soft Matter ; 14(11): 2094-2103, 2018 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-29487934

RESUMEN

Polymer nanocomposites (PNCs) hold great promise as future lightweight functional materials processable by additive manufacturing technologies. However, their rapid deployment is hindered by their performance depending strongly on the nanoparticle (NP) spatial organization. Therefore, the ability to control nanoparticle dispersion in the process of PNC preparation is a crucial prerequisite for utilizing their potential in functional composites. We report on the bulk processing technique of tailored NP spatial organization in a model glass forming polymer matrix controlled by structural and kinetic variables of the preparation protocol. Namely, we studied the impact of solvent on the NP arrangement, which was already known as a tuning parameter of the solid-state structure. We emphasized the qualitative differences between "poorly dispersed" NP arrays, which, by combination of rheological assessment and structural analysis (TEM, USAXS), we identified as chain bound clusters and aggregates of either thermodynamic or kinetical origin. They are characterized by substantially distinct formation kinetics and mismatched properties compared to each other and individually dispersed NPs. We quantitatively linked all the currently observed types of NP dispersion with their rheological properties during the solution blending step and the amount of polymer adsorption and depletion attraction. We propose the ratio of NP-polymer and NP-solvent enthalpy of adsorption as a parameter capable of the quantitative prediction of NP arrangement in systems similar to our current model PNC. Finally, we bring forth the comparison of glass transition temperatures to further demonstrate the importance of NP spatial organization in PNCs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA