Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Environ Sci Technol ; 49(3): 1752-60, 2015 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-25560912

RESUMEN

Even though the importance of ecosystems in sustaining all human activities is well-known, methods for sustainable engineering fail to fully account for this role of nature. Most methods account for the demand for ecosystem services, but almost none account for the supply. Incomplete accounting of the very foundation of human well-being can result in perverse outcomes from decisions meant to enhance sustainability and lost opportunities for benefiting from the ability of nature to satisfy human needs in an economically and environmentally superior manner. This paper develops a framework for understanding and designing synergies between technological and ecological systems to encourage greater harmony between human activities and nature. This framework considers technological systems ranging from individual processes to supply chains and life cycles, along with corresponding ecological systems at multiple spatial scales ranging from local to global. The demand for specific ecosystem services is determined from information about emissions and resource use, while the supply is obtained from information about the capacity of relevant ecosystems. Metrics calculate the sustainability of individual ecosystem services at multiple spatial scales and help define necessary but not sufficient conditions for local and global sustainability. Efforts to reduce ecological overshoot encourage enhancement of life cycle efficiency, development of industrial symbiosis, innovative designs and policies, and ecological restoration, thus combining the best features of many existing methods. Opportunities for theoretical and applied research to make this framework practical are also discussed.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Ingeniería , Actividades Humanas , Humanos , Industrias
2.
Environ Sci Technol ; 46(18): 9822-9, 2012 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-22775327

RESUMEN

At present, most synthetic organic materials are produced from fossil carbon feedstock that is regenerated over time scales of millions of years. Biobased alternatives can be rapidly renewed in cradle-to-cradle cycles (1-10 years). Such materials extend landfill life and decrease undesirable impacts due to material persistence. This work develops a LCA for synthesis of polyhydroxybutyrate (PHB) from methane with subsequent biodegradation of PHB back to biogas (40-70% methane, 30-60% carbon dioxide). The parameters for this cradle-to-cradle cycle for PHB production are developed and used as the basis for a cradle-to-gate LCA. PHB production from biogas methane is shown to be preferable to its production from cultivated feedstock due to the energy and land required for the feedstock cultivation and fermentation. For the PHB-methane cycle, the major challenges are PHB recovery and demands for energy. Some or all of the energy requirements can be satisfied using renewable energy, such as a portion of the collected biogas methane. Oxidation of 18-26% of the methane in a biogas stream can meet the energy demands for aeration and agitation, and recovery of PHB synthesized from the remaining 74-82%. Effective coupling of waste-to-energy technologies could thus conceivably enable PHB production without imported carbon and energy.


Asunto(s)
Biocombustibles/análisis , Biocombustibles/microbiología , Hidroxibutiratos/química , Metano/química , Polímeros/química , Biodegradación Ambiental , Biomasa , Hidroxibutiratos/metabolismo , Metano/metabolismo , Modelos Moleculares , Polímeros/metabolismo , Energía Renovable
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...