RESUMEN
Gelation of protein condensates formed by liquid-liquid phase separation occurs in a wide range of biological contexts, from the assembly of biomaterials to the formation of fibrillar aggregates, and is therefore of interest for biomedical applications. Soluble-to-gel (sol-gel) transitions are controlled through macroscopic processes such as changes in temperature or buffer composition, resulting in bulk conversion of liquid droplets into microgels within minutes to hours. Using microscopy and mass spectrometry, we show that condensates of an engineered mini-spidroin (NT2repCTYF) undergo a spontaneous sol-gel transition resulting in the loss of exchange of proteins between the soluble and the condensed phase. This feature enables us to specifically trap a silk-domain-tagged target protein in the spidroin microgels. Surprisingly, laser pulses trigger near-instant gelation. By loading the condensates with fluorescent dyes or drugs, we can control the wavelength at which gelation is triggered. Fluorescence microscopy reveals that laser-induced gelation significantly further increases the partitioning of the fluorescent molecules into the condensates. In summary, our findings demonstrate direct control of phase transitions in individual condensates, opening new avenues for functional and structural characterization.
Asunto(s)
Rayos Láser , Transición de Fase , Fibroínas/química , Colorantes Fluorescentes/química , Geles/químicaRESUMEN
Proteins can misfold into fibrillar or amorphous aggregates and molecular chaperones act as crucial guardians against these undesirable processes. The BRICHOS chaperone domain, found in several otherwise unrelated proproteins that contain amyloidogenic regions, effectively inhibits amyloid formation and toxicity but can in some cases also prevent non-fibrillar, amorphous protein aggregation. Here, we elucidate the molecular basis behind the multifaceted chaperone activities of the BRICHOS domain from the Bri2 proprotein. High-confidence AlphaFold2 and RoseTTAFold predictions suggest that the intramolecular amyloidogenic region (Bri23) is part of the hydrophobic core of the proprotein, where it occupies the proposed amyloid binding site, explaining the markedly reduced ability of the proprotein to prevent an exogenous amyloidogenic peptide from aggregating. However, the BRICHOS-Bri23 complex maintains its ability to form large polydisperse oligomers that prevent amorphous protein aggregation. A cryo-EM-derived model of the Bri2 BRICHOS oligomer is compatible with surface-exposed hydrophobic motifs that get exposed and come together during oligomerization, explaining its effects against amorphous aggregation. These findings provide a molecular basis for the BRICHOS chaperone domain function, where distinct surfaces are employed against different forms of protein aggregation.
Asunto(s)
Chaperonas Moleculares , Dominios Proteicos , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Sitios de Unión , Humanos , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Modelos Moleculares , Interacciones Hidrofóbicas e HidrofílicasRESUMEN
Membrane-less organelles assemble through liquid-liquid phase separation (LLPS) of partially disordered proteins into highly specialized microenvironments. Currently, it is challenging to obtain a clear understanding of the relationship between the structure and function of phase-separated protein assemblies, owing to their size, dynamics and heterogeneity. In this Perspective, we discuss recent advances in mass spectrometry (MS) that offer several promising approaches for the study of protein LLPS. We survey MS tools that have provided valuable insights into other insoluble protein systems, such as amyloids, and describe how they can also be applied to study proteins that undergo LLPS. On the basis of these recent advances, we propose to integrate MS into the experimental workflow for LLPS studies. We identify specific challenges and future opportunities for the analysis of protein condensate structure and function by MS.
Asunto(s)
Proteínas Intrínsecamente Desordenadas , Orgánulos , Orgánulos/química , Orgánulos/metabolismo , Proteínas Intrínsecamente Desordenadas/análisis , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/metabolismoRESUMEN
The Lon protease is a highly conserved protein degradation machine that has critical regulatory and protein quality control functions in cells from the three domains of life. Here, we report the discovery of a α-proteobacterial heat shock protein, LarA, that functions as a dedicated Lon regulator. We show that LarA accumulates at the onset of proteotoxic stress and allosterically activates Lon-catalysed degradation of a large group of substrates through a five amino acid sequence at its C-terminus. Further, we find that high levels of LarA cause growth inhibition in a Lon-dependent manner and that Lon-mediated degradation of LarA itself ensures low LarA levels in the absence of stress. We suggest that the temporal LarA-dependent activation of Lon helps to meet an increased proteolysis demand in response to protein unfolding stress. Our study defines a regulatory interaction of a conserved protease with a heat shock protein, serving as a paradigm of how protease activity can be tuned under changing environmental conditions.
Asunto(s)
Proteínas de Escherichia coli , Proteasa La , Proteasa La/genética , Proteasa La/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Proteínas de Escherichia coli/metabolismo , Estrés Proteotóxico , Endopeptidasas/metabolismo , Proteasas ATP-Dependientes/metabolismoRESUMEN
Engineering liquid-liquid phase separation (LLPS) of proteins and peptides holds great promise for the development of therapeutic carriers with intracellular delivery capability but requires accurate determination of their assembly properties in vitro, usually with fluorescently labeled cargo. Here, we use mass spectrometry (MS) to investigate redox-sensitive coacervate microdroplets (the dense phase formed during LLPS) assembled from a short His- and Tyr-rich peptide. We can monitor the enrichment of a reduced peptide in dilute phase as the microdroplets dissolve triggered by their redox-sensitive side chain, thus providing a quantitative readout for disassembly. Furthermore, MS can detect the release of a short peptide from coacervates under reducing conditions. In summary, with MS, we can monitor the disassembly and cargo release of engineered coacervates used as therapeutic carriers without the need for additional labels.
Asunto(s)
Péptidos , Proteínas , Péptidos/química , Proteínas/química , Espectrometría de MasasRESUMEN
Amyloid fibrils-nanoscale fibrillar aggregates with high levels of order-are pathogenic in some today incurable human diseases; however, there are also many physiologically functioning amyloids in nature. The process of amyloid formation is typically nucleation-elongation-dependent, as exemplified by the pathogenic amyloid-ß peptide (Aß) that is associated with Alzheimer's disease. Spider silk, one of the toughest biomaterials, shares characteristics with amyloid. In this study, it is shown that forming amyloid-like nanofibrils is an inherent property preserved by various spider silk proteins (spidroins). Both spidroins and Aß capped by spidroin N- and C-terminal domains, can assemble into macroscopic spider silk-like fibers that consist of straight nanofibrils parallel to the fiber axis as observed in native spider silk. While Aß forms amyloid nanofibrils through a nucleation-dependent pathway and exhibits strong cytotoxicity and seeding effects, spidroins spontaneously and rapidly form amyloid-like nanofibrils via a non-nucleation-dependent polymerization pathway that involves lateral packing of fibrils. Spidroin nanofibrils share amyloid-like properties but lack strong cytotoxicity and the ability to self-seed or cross-seed human amyloidogenic peptides. These results suggest that spidroins´ unique primary structures have evolved to allow functional properties of amyloid, and at the same time direct their fibrillization pathways to avoid formation of cytotoxic intermediates.
Asunto(s)
Fibroínas , Arañas , Humanos , Animales , Seda/química , Fibroínas/química , Polimerizacion , Amiloide , Péptidos beta-Amiloides/metabolismo , Arañas/metabolismoRESUMEN
ATP-independent molecular chaperones are important for maintaining cellular fitness but the molecular determinants for preventing aggregation of partly unfolded protein substrates remain unclear, particularly regarding assembly state and basis for substrate recognition. The BRICHOS domain can perform small heat shock (sHSP)-like chaperone functions to widely different degrees depending on its assembly state and sequence. Here, we observed three hydrophobic sequence motifs in chaperone-active domains, and found that they get surface-exposed when the BRICHOS domain assembles into larger oligomers. Studies of loop-swap variants and site-specific mutants further revealed that the biological hydrophobicities of the three short motifs linearly correlate with the efficiency to prevent amorphous protein aggregation. At the same time, they do not at all correlate with the ability to prevent ordered amyloid fibril formation. The linear correlations also accurately predict activities of chimeras containing short hydrophobic sequence motifs from a sHSP that is unrelated to BRICHOS. Our data indicate that short, exposed hydrophobic motifs brought together by oligomerisation are sufficient and necessary for efficient chaperone activity against amorphous protein aggregation.
Asunto(s)
Amiloide , Agregado de Proteínas , Amiloide/metabolismo , Pliegue de Proteína , Chaperonas Moleculares/metabolismo , Proteínas Amiloidogénicas , Interacciones Hidrofóbicas e HidrofílicasRESUMEN
The BRICHOS protein superfamily is a diverse group of proteins associated with a wide variety of human diseases, including respiratory distress, COVID-19, dementia, and cancer. A key characteristic of these proteins-besides their BRICHOS domain present in the ER lumen/extracellular part-is that they harbor an aggregation-prone region, which the BRICHOS domain is proposed to chaperone during biosynthesis. All so far studied BRICHOS domains modulate the aggregation pathway of various amyloid-forming substrates, but not all of them can keep denaturing proteins in a folding-competent state, in a similar manner as small heat shock proteins. Current evidence suggests that the ability to interfere with the aggregation pathways of substrates with entirely different end-point structures is dictated by BRICHOS quaternary structure as well as specific surface motifs. This review aims to provide an overview of the BRICHOS protein family and a perspective of the diverse molecular chaperone-like functions of various BRICHOS domains in relation to their structure and conformational plasticity. Furthermore, we speculate about the physiological implication of the diverse molecular chaperone functions and discuss the possibility to use the BRICHOS domain as a blood-brain barrier permeable molecular chaperone treatment of protein aggregation disorders.
Asunto(s)
COVID-19 , Humanos , Pliegue de Proteína , Amiloide/química , Chaperonas Moleculares/química , Proteínas AmiloidogénicasRESUMEN
Many protein condensates can convert to fibrillar aggregates, but the underlying mechanisms are unclear. Liquid-liquid phase separation (LLPS) of spider silk proteins, spidroins, suggests a regulatory switch between both states. Here, we combine microscopy and native mass spectrometry to investigate the influence of protein sequence, ions, and regulatory domains on spidroin LLPS. We find that salting out-effects drive LLPS via low-affinity stickers in the repeat domains. Interestingly, conditions that enable LLPS simultaneously cause dissociation of the dimeric C-terminal domain (CTD), priming it for aggregation. Since the CTD enhances LLPS of spidroins but is also required for their conversion into amyloid-like fibers, we expand the stickers and spacers-model of phase separation with the concept of folded domains as conditional stickers that represent regulatory units.
Asunto(s)
Fibroínas , Seda , Seda/química , Fibroínas/química , Proteínas de Artrópodos , Secuencia de AminoácidosRESUMEN
How the self-assembly of partially disordered proteins generates functional compartments in the cytoplasm and particularly in the nucleus is poorly understood. Nucleophosmin 1 (NPM1) is an abundant nucleolar protein that forms large oligomers and undergoes liquid-liquid phase separation by binding RNA or ribosomal proteins. It provides the scaffold for ribosome assembly but also prevents protein aggregation as part of the cellular stress response. Here, we use aggregation assays and native mass spectrometry (MS) to examine the relationship between the self-assembly and chaperone activity of NPM1. We find that oligomerization of full-length NPM1 modulates its ability to retard amyloid formation in vitro. Machine learning-based structure prediction and cryo-electron microscopy reveal fuzzy interactions between the acidic disordered region and the C-terminal nucleotide-binding domain, which cross-link NPM1 pentamers into partially disordered oligomers. The addition of basic peptides results in a tighter association within the oligomers, reducing their capacity to prevent amyloid formation. Together, our findings show that NPM1 uses a "grappling hook" mechanism to form a network-like structure that traps aggregation-prone proteins. Nucleolar proteins and RNAs simultaneously modulate the association strength and chaperone activity, suggesting a mechanism by which nucleolar composition regulates the chaperone activity of NPM1.
RESUMEN
Proteins can self-assemble into amyloid fibrils or amorphous aggregates and thereby cause disease. Molecular chaperones can prevent both these types of protein aggregation, but to what extent the respective mechanisms are overlapping is not fully understood. The BRICHOS domain constitutes a disease-associated chaperone family, with activities against amyloid neurotoxicity, fibril formation, and amorphous protein aggregation. Here, we show that the activities of BRICHOS against amyloid-induced neurotoxicity and fibril formation, respectively, are oppositely dependent on a conserved aspartate residue, while the ability to suppress amorphous protein aggregation is unchanged by Asp to Asn mutations. The Asp is evolutionarily highly conserved in >3000 analysed BRICHOS domains but is replaced by Asn in some BRICHOS families. The conserved Asp in its ionized state promotes structural flexibility and has a pK a value between pH 6.0 and 7.0, suggesting that chaperone effects can be differently affected by physiological pH variations.
RESUMEN
The assembly of proteins and peptides into amyloid fibrils is causally linked to serious disorders such as Alzheimer's disease. Multiple proteins have been shown to prevent amyloid formation in vitro and in vivo, ranging from highly specific chaperone-client pairs to completely nonspecific binding of aggregation-prone peptides. The underlying interactions remain elusive. Here, we turn to the machine learning-based structure prediction algorithm AlphaFold2 to obtain models for the nonspecific interactions of ß-lactoglobulin, transthyretin, or thioredoxin 80 with the model amyloid peptide amyloid ß and the highly specific complex between the BRICHOS chaperone domain of C-terminal region of lung surfactant protein C and its polyvaline target. Using a combination of native mass spectrometry (MS) and ion mobility MS, we show that nonspecific chaperoning is driven predominantly by hydrophobic interactions of amyloid ß with hydrophobic surfaces in ß-lactoglobulin, transthyretin, and thioredoxin 80, and in part regulated by oligomer stability. For C-terminal region of lung surfactant protein C, native MS and hydrogen-deuterium exchange MS reveal that a disordered region recognizes the polyvaline target by forming a complementary ß-strand. Hence, we show that AlphaFold2 and MS can yield atomistic models of hard-to-capture protein interactions that reveal different chaperoning mechanisms based on separate ligand properties and may provide possible clues for specific therapeutic intervention.
Asunto(s)
Péptidos beta-Amiloides , Amiloide , Humanos , Amiloide/química , Amiloide/metabolismo , Péptidos beta-Amiloides/química , Péptidos beta-Amiloides/metabolismo , Prealbúmina , Deuterio , Ligandos , Chaperonas Moleculares/metabolismo , Espectrometría de Masas , Aprendizaje Automático , Tiorredoxinas , Lactoglobulinas , Proteínas Asociadas a Surfactante PulmonarRESUMEN
Molecular chaperones are essential to maintain proteostasis. While the functions of intracellular molecular chaperones that oversee protein synthesis, folding and aggregation, are established, those specialized to work in the extracellular environment are less understood. Extracellular proteins reside in a considerably more oxidizing milieu than cytoplasmic proteins and are stabilized by abundant disulfide bonds. Hence, extracellular proteins are potentially destabilized and sensitive to aggregation under reducing conditions. We combine biochemical and mass spectrometry experiments and elucidate that the molecular chaperone functions of the extracellular protein domain Bri2 BRICHOS only appear under reducing conditions, through the assembly of monomers into large polydisperse oligomers by an intra- to intermolecular disulfide bond relay mechanism. Chaperone-active assemblies of the Bri2 BRICHOS domain are efficiently generated by physiological thiol-containing compounds and proteins, and appear in parallel with reduction-induced aggregation of extracellular proteins. Our results give insights into how potent chaperone activity can be generated from inactive precursors under conditions that are destabilizing to most extracellular proteins and thereby support protein stability/folding in the extracellular space. SIGNIFICANCE: Chaperones are essential to cells as they counteract toxic consequences of protein misfolding particularly under stress conditions. Our work describes a novel activation mechanism of an extracellular molecular chaperone domain, called Bri2 BRICHOS. This mechanism is based on reducing conditions that initiate small subunits to assemble into large oligomers via a disulfide relay mechanism. Activated Bri2 BRICHOS inhibits reduction-induced aggregation of extracellular proteins and could be a means to boost proteostasis in the extracellular environment upon reductive stress.
Asunto(s)
Chaperonas Moleculares , Pliegue de Proteína , Adenosina Trifosfato , Disulfuros , Chaperonas Moleculares/química , Dominios ProteicosRESUMEN
Protein oligomerization is a commonly encountered strategy by which the functional repertoire of proteins is increased. This, however, is a double-edged sword strategy because protein oligomerization is notoriously difficult to control. Living organisms have therefore developed a number of chaperones that prevent protein aggregation. The small ATP-independent molecular chaperone domain proSP-C BRICHOS, which is mainly trimeric, specifically inhibits fibril surface-catalyzed nucleation reactions that give rise to toxic oligomers during the aggregation of the Alzheimer's disease-related amyloid-ß peptide (Aß42). Here, we have created a stable proSP-C BRICHOS monomer mutant and show that it does not bind to monomeric Aß42 but has a high affinity for Aß42 fibrils, using surface plasmon resonance. Kinetic analysis of Aß42 aggregation profiles, measured by thioflavin T fluorescence, reveals that the proSP-C BRICHOS monomer mutant strongly inhibits secondary nucleation reactions and thereby reduces the level of catalytic formation of toxic Aß42 oligomers. To study binding between the proSP-C BRICHOS monomer mutant and small soluble Aß42 aggregates, we analyzed fluorescence cross-correlation spectroscopy measurements with the maximum entropy method for fluorescence correlation spectroscopy. We found that the proSP-C BRICHOS monomer mutant binds to the smallest emerging Aß42 aggregates that are comprised of eight or fewer Aß42 molecules, which are already secondary nucleation competent. Our approach can be used to provide molecular-level insights into the mechanisms of action of substances that interfere with protein aggregation.
Asunto(s)
Adenosina Trifosfato/metabolismo , Péptidos beta-Amiloides/química , Péptidos beta-Amiloides/metabolismo , Chaperonas Moleculares , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Agregación Patológica de Proteínas , Multimerización de Proteína , Proteína C Asociada a Surfactante Pulmonar/metabolismo , Humanos , Dominios Proteicos , Proteína C Asociada a Surfactante Pulmonar/genéticaRESUMEN
Although native mass spectrometry is widely applied to monitor chemical or thermal protein denaturation, it is not clear to what extent it can inform about alkali-induced unfolding. Here, we probe the relationship between solution- and gas-phase structures of proteins under alkaline conditions. Native ion mobility-mass spectrometry reveals that globular proteins are destabilized rather than globally unfolded, which is supported by solution studies, providing detailed insights into alkali-induced unfolding events. Our results pave the way for new applications of MS to monitor structures and interactions of proteins at high pH.
Asunto(s)
Espectrometría de Movilidad Iónica/métodos , Espectrometría de Masas/métodos , Desplegamiento Proteico , Proteínas/química , Concentración de Iones de Hidrógeno , Estructura Secundaria de ProteínaRESUMEN
In solution, the charge of a protein is intricately linked to its stability, but electrospray ionization distorts this connection, potentially limiting the ability of native mass spectrometry to inform about protein structure and dynamics. How the behavior of intact proteins in the gas phase depends on the presence and distribution of ionizable surface residues has been difficult to answer because multiple chargeable sites are present in virtually all proteins. Turning to protein engineering, we show that ionizable side chains are completely dispensable for charging under native conditions, but if present, they are preferential protonation sites. The absence of ionizable side chains results in identical charge state distributions under native-like and denaturing conditions, while coexisting conformers can be distinguished using ion mobility separation. An excess of ionizable side chains, on the other hand, effectively modulates protein ion stability. In fact, moving a single ionizable group can dramatically alter the gas-phase conformation of a protein ion. We conclude that although the sum of the charges is governed solely by Coulombic terms, their locations affect the stability of the protein in the gas phase.
RESUMEN
Alzheimer's disease (AD) is the most common dementia, characterized by pathological accumulation of ß-amyloid (Aß) and hyperphosphorylation of tau protein, together with a damaging chronic inflammation. The lack of effective treatments urgently warrants new therapeutic strategies. Resolution of inflammation, associated with beneficial and regenerative activities, is mediated by specialized pro-resolving lipid mediators (SPMs) including maresin 1 (MaR1). Decreased levels of MaR1 have been observed in AD brains. However, the pro-resolving role of MaR1 in AD has not been fully investigated. In the present study, human monocyte-derived microglia (MdM) and a differentiated human monocyte cell line (THP-1 cells) exposed to Aß were used as models of AD neuroinflammation. We have studied the potential of MaR1 to inhibit pro-inflammatory activation of Aß and assessed its ability to stimulate phagocytosis of Aß42 . MaR1 inhibited the Aß42 -induced increase in cytokine secretion and stimulated the uptake of Aß42 in both MdM and differentiated THP-1 cells. MaR1 was also found to decrease chemokine secretion and reduce the associated increase in the activation marker CD40. Activation of kinases involved in transduction of inflammation was not affected by MaR1, but the activity of nuclear factor (NF)-κB was decreased. Our data show that MaR1 exerts effects that indicate a pro-resolving role in the context of AD and thus presents itself as a potential therapeutic target for AD.
Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Ácidos Docosahexaenoicos/metabolismo , Microglía/metabolismo , Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides/genética , Western Blotting , Supervivencia Celular/genética , Supervivencia Celular/fisiología , Células Cultivadas , Ácidos Docosahexaenoicos/genética , Humanos , Inmunohistoquímica , FN-kappa B/metabolismo , Fagocitosis/genética , Fagocitosis/fisiología , Células THP-1RESUMEN
Molecular chaperones assist proteins in achieving a functional structure and prevent them from misfolding into aggregates, including disease-associated deposits. The BRICHOS domain from familial dementia associated protein Bri2 (or ITM2B) probably chaperones its specific proprotein region with high ß-sheet propensity during biosynthesis. Recently, Bri2 BRICHOS activity was found to extend to other amyloidogenic, fibril forming peptides, in particular, Alzheimer's disease associated amyloid-ß peptide, as well as to amorphous aggregate forming proteins. However, the biological functions of the central nervous system specific homologue Bri3 BRICHOS are still to be elucidated. Here we give a detailed characterisation of the recombinant human (rh) Bri3 BRICHOS domain and compare its structural and functional properties with rh Bri2 BRICHOS. The results show that rh Bri3 BRICHOS forms more and larger oligomers, somewhat more efficiently prevents non-fibrillar protein aggregation, and less efficiently reduces Aß42 fibril formation compared to rh Bri2 BRICHOS. This suggests that Bri2 and Bri3 BRICHOS have overlapping molecular mechanisms and that their apparently different tissue expression and processing may result in different physiological functions.
Asunto(s)
Péptidos beta-Amiloides/química , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/metabolismo , Fragmentos de Péptidos/química , Agregado de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Secuencia de Aminoácidos , Humanos , Cinética , Modelos Moleculares , Desnaturalización Proteica , Dominios ProteicosRESUMEN
Molecular chaperones play important roles in preventing protein misfolding and its potentially harmful consequences. Deterioration of molecular chaperone systems upon ageing are thought to underlie age-related neurodegenerative diseases, and augmenting their activities could have therapeutic potential. The dementia relevant domain BRICHOS from the Bri2 protein shows qualitatively different chaperone activities depending on quaternary structure, and assembly of monomers into high-molecular weight oligomers reduces the ability to prevent neurotoxicity induced by the Alzheimer-associated amyloid-ß peptide 1-42 (Aß42). Here we design a Bri2 BRICHOS mutant (R221E) that forms stable monomers and selectively blocks a main source of toxic species during Aß42 aggregation. Wild type Bri2 BRICHOS oligomers are partly disassembled into monomers in the presence of the R221E mutant, which leads to potentiated ability to prevent Aß42 toxicity to neuronal network activity. These results suggest that the activity of endogenous molecular chaperones may be modulated to enhance anti-Aß42 neurotoxic effects.
Asunto(s)
Péptidos beta-Amiloides/antagonistas & inhibidores , Hipocampo/metabolismo , Chaperonas Moleculares/metabolismo , Amiloide/metabolismo , Amiloide/ultraestructura , Péptidos beta-Amiloides/química , Péptidos beta-Amiloides/metabolismo , Hipocampo/efectos de los fármacos , Cinesis , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/farmacología , Agregado de Proteínas/efectos de los fármacos , Unión Proteica , Conformación Proteica , Multimerización de Proteína , Relación Estructura-ActividadRESUMEN
Proteins require an optimal balance of conformational flexibility and stability in their native environment to ensure their biological functions. A striking example is spidroins, spider silk proteins, which are stored at extremely high concentrations in soluble form, yet undergo amyloid-like aggregation during spinning. Here, we elucidate the stability of the highly soluble N-terminal domain (NT) of major ampullate spidroin 1 in the Escherichia coli cytosol as well as in inclusion bodies containing fibrillar aggregates. Surprisingly, we find that NT, despite being largely composed of amyloidogenic sequences, showed no signs of concentration-dependent aggregation. Using a novel intracellular hydrogen/deuterium exchange mass spectrometry (HDX-MS) approach, we reveal that NT adopts a tight fold in the E. coli cytosol and in this manner conceals its aggregation-prone regions by maintaining a tight fold under crowded conditions. Fusion of NT to the unstructured amyloid-forming Aß40 peptide, on the other hand, results in the formation of fibrillar aggregates. However, HDX-MS indicates that the NT domain is only partially incorporated into these aggregates in vivo. We conclude that NT is able to control its aggregation to remain functional under the extreme conditions in the spider silk gland.