Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Med Chem ; 59(15): 7138-51, 2016 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-27385654

RESUMEN

There are currently no treatments for life-threatening infections caused by human polyomaviruses JCV and BKV. We therefore report herein the first crystal structure of the hexameric helicase of JCV large T antigen (apo) and its use to drive the structure-based design of dual JCV and BKV ATP-competitive inhibitors. The crystal structures obtained by soaking our early inhibitors into the JCV helicase allowed us to rapidly improve the biochemical activity of our inhibitors from 18 µM for the early 6-(2-methoxyphenyl)- and the 6-(2-ethoxyphenyl)-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazole hits 1a and 1b to 0.6 µM for triazolopyridine 12i. In addition, we were able to demonstrate measurable antiviral activity in Vero cells for our thiazolopyridine series in the absence of marked cytotoxicity, thus confirming the usefulness of this approach.


Asunto(s)
Virus BK/enzimología , ADN Helicasas/antagonistas & inhibidores , Descubrimiento de Drogas , Inhibidores Enzimáticos/farmacología , Virus JC/enzimología , ADN Helicasas/metabolismo , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Modelos Moleculares , Estructura Molecular , Relación Estructura-Actividad
2.
Methods Enzymol ; 493: 219-39, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21371593

RESUMEN

NMR spectroscopy is a popular and highly versatile screening method for fragment-based drug discovery. NMR methods are capable of robustly detecting the binding of fragments to macromolecular targets over an extraordinarily broad affinity range (from covalent to millimolar). This chapter provides a stepwise process for creating an NMR-based fragment screening program. The construction of fragment libraries is described, including compound selection, plating of stocks, and preparation of mixtures. Guidance is given for designing fragment screens, such as choosing the appropriate NMR screening format and method, and optimizing the sample conditions and experimental parameters. The identification and validation of screening hits is described, and a number of potential pitfalls are discussed. Rather than detailing one specific screening protocol, this chapter outlines the available options and provides information to enable users to design their own customized fragment screening programs.


Asunto(s)
Descubrimiento de Drogas/métodos , Espectroscopía de Resonancia Magnética/métodos , Isótopos de Carbono , Evaluación Preclínica de Medicamentos/métodos , Flúor , Enlace de Hidrógeno , Ligandos , Resonancia Magnética Nuclear Biomolecular/métodos , Bibliotecas de Moléculas Pequeñas
3.
Structure ; 18(9): 1083-93, 2010 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-20826335

RESUMEN

Dysregulation of the calcitonin gene-related peptide (CGRP), a potent vasodilator, is directly implicated in the pathogenesis of migraine. CGRP binds to and signals through the CGRP receptor (CGRP-R), a heterodimer containing the calcitonin receptor-like receptor (CLR), a class B GPCR, and RAMP1, a receptor activity-modifying protein. We have solved the crystal structure of the CLR/RAMP1 N-terminal ectodomain heterodimer, revealing how RAMPs bind to and potentially modulate the activities of the CLR GPCR subfamily. We also report the structures of CLR/RAMP1 in complex with the clinical receptor antagonists olcegepant (BIBN4096BS) and telcagepant (MK0974). Both drugs act by blocking access to the peptide-binding cleft at the interface of CLR and RAMP1. These structures illustrate, for the first time, how small molecules bind to and modulate the activity of a class B GPCR, and highlight the challenges of designing potent receptor antagonists for the treatment of migraine and other class B GPCR-related diseases.


Asunto(s)
Azepinas/química , Imidazoles/química , Piperazinas/química , Quinazolinas/química , Receptores de Péptido Relacionado con el Gen de Calcitonina/química , Azepinas/farmacología , Sitios de Unión , Péptido Relacionado con Gen de Calcitonina/química , Péptido Relacionado con Gen de Calcitonina/metabolismo , Antagonistas del Receptor Peptídico Relacionado con el Gen de la Calcitonina , Proteína Similar al Receptor de Calcitonina/química , Proteína Similar al Receptor de Calcitonina/metabolismo , Cristalografía por Rayos X , Imidazoles/farmacología , Piperazinas/farmacología , Estructura Terciaria de Proteína , Quinazolinas/farmacología , Receptores de Péptido Relacionado con el Gen de Calcitonina/metabolismo
4.
Biochemistry ; 49(9): 1862-72, 2010 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-20099900

RESUMEN

The calcitonin gene-related peptide (CGRP) receptor is a heterodimer of two membrane proteins: calcitonin receptor-like receptor (CLR) and receptor activity-modifying protein 1 (RAMP1). CLR is a class B G-protein-coupled receptor (GPCR), possessing a characteristic large amino-terminal extracellular domain (ECD) important for ligand recognition and binding. Dimerization of CLR with RAMP1 provides specificity for CGRP versus related agonists. Here we report the expression, purification, and refolding of a soluble form of the CGRP receptor comprising a heterodimer of the CLR and RAMP1 ECDs. The extracellular protein domains corresponding to residues 23-133 of CLR and residues 26-117 of RAMP1 were shown to be sufficient for formation of a stable, monodisperse complex. The binding affinity of the purified ECD complex for the CGRP peptide was significantly lower than that of the native receptor (IC(50) of 12 microM for the purified ECD complex vs 233 pM for membrane-bound CGRP receptor), indicating that other regions of CLR and/or RAMP1 are important for peptide agonist binding. However, high-affinity binding to known potent and specific nonpeptide antagonists of the CGRP receptor, including olcegepant and telcagepant (K(D) < 0.02 muM), as well as N-terminally truncated peptides and peptide analogues (140 nM to 1.62 microM) was observed.


Asunto(s)
Espacio Extracelular/química , Pliegue de Proteína , Receptores de Péptido Relacionado con el Gen de Calcitonina/química , Receptores de Calcitonina/química , Secuencia de Aminoácidos , Unión Competitiva , Proteína Similar al Receptor de Calcitonina , Línea Celular Tumoral , Cristalografía por Rayos X , Dimerización , Espacio Extracelular/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ligandos , Sustancias Macromoleculares/química , Sustancias Macromoleculares/metabolismo , Espectroscopía de Resonancia Magnética , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Datos de Secuencia Molecular , Unión Proteica , Estructura Terciaria de Proteína , Proteína 1 Modificadora de la Actividad de Receptores , Proteínas Modificadoras de la Actividad de Receptores , Receptores de Calcitonina/metabolismo , Receptores de Péptido Relacionado con el Gen de Calcitonina/biosíntesis , Receptores de Péptido Relacionado con el Gen de Calcitonina/genética , Receptores de Péptido Relacionado con el Gen de Calcitonina/aislamiento & purificación , Solubilidad
6.
Comb Chem High Throughput Screen ; 5(8): 583-90, 2002 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-12470255

RESUMEN

The SHAPES strategy combines nuclear magnetic resonance (NMR) screening of a library of small drug-like molecules with a variety of complementary methods, such as virtual screening, high throughput enzymatic assays, combinatorial chemistry, X-ray crystallography, and molecular modeling, in a directed search for new medicinal chemistry leads. In the past few years, the SHAPES strategy has found widespread utility in pharmaceutical research. To illustrate a variety of different implementations of the method, we will focus in this review on recent applications of the SHAPES strategy in several drug discovery programs at Vertex Pharmaceuticals.


Asunto(s)
Técnicas Químicas Combinatorias , Diseño de Fármacos , Proteínas de Neoplasias , Resonancia Magnética Nuclear Biomolecular/métodos , Tecnología Farmacéutica , Sitios de Unión , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Proteínas de Unión a Ácidos Grasos , Proteínas Quinasas JNK Activadas por Mitógenos , Ligandos , Proteínas Quinasas Activadas por Mitógenos/química , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Modelos Moleculares , ARN/química , ARN/metabolismo , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...