Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Front Mol Biosci ; 10: 1268843, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37822422

RESUMEN

Introduction: Cellular retinoic acid (RA)-binding protein 1 (CRABP1) is a highly conserved protein comprised of an anti-parallel, beta-barrel, and a helix-turn-helix segment outside this barrel. Functionally, CRABP1 is thought to bind and sequester cytosolic RA. Recently, CRABP1 has been established as a major mediator of rapid, non-genomic activity of RA in the cytosol, referred to as "non-canonical" activity. Previously, we have reported that CRABP1 interacts with and dampens the activation of calcium-calmodulin (Ca2+-CaM)-dependent kinase 2 (CaMKII), a major effector of Ca2+ signaling. Through biophysical, molecular, and cellular assays, we, herein, elucidate the molecular and structural mechanisms underlying the action of CRABP1 in dampening CaMKII activation. Results: We identify an interaction surface on CRABP1 for CaMKII binding, located on the beta-sheet surface of the barrel, and an allosteric region within the helix segment outside the barrel, where both are important for interacting with CaMKII. Molecular studies reveal that CRABP1 preferentially associates with the inactive form of CaMKII, thereby dampening CaMKII activation. Alanine mutagenesis of residues implicated in the CaMKII interaction results in either a loss of this preference or a shift of CRABP1 from associating with the inactive CaMKII to associating with the active CaMKII, which corresponds to changes in CRABP1's effect in modulating CaMKII activation. Conclusions: This is the first study to elucidate the molecular and structural basis for CRABP1's function in modulating CaMKII activation. These results further shed insights into CRABP1's functional involvement in multiple signaling pathways, as well as its extremely high sequence conservation across species and over evolution.

2.
Cell Biosci ; 13(1): 168, 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37700376

RESUMEN

BACKGROUND: A motor unit (MU) is formed by a single alpha motor neuron (MN) and the muscle fibers it innervates. The MU is essential for all voluntary movements. Functional deficits in the MU result in neuromuscular disorders (NMDs). The pathological mechanisms underlying most NMDs remain poorly understood, in part due to the lack of in vitro models that can comprehensively recapitulate multistage intercellular interactions and physiological function of the MU. RESULTS: We have designed a novel three-dimensional (3D) bilayer hydrogel tri-culture system where architecturally organized MUs can form in vitro. A sequential co-culture procedure using the three cell types of a MU, MN, myoblast, and Schwann cell was designed to construct a co-differentiating tri-culture on a bilayer hydrogel matrix. We utilized a µ-molded hydrogel with an additional Matrigel layer to form the bilayer hydrogel device. The µ-molded hydrogel layer provides the topological cues for myoblast differentiation. The Matrigel layer, with embedded Schwann cells, not only separates the MNs from myoblasts but also provides a proper micro-environment for MU development. The completed model shows key MU features including an organized MU structure, myelinated nerves, aligned myotubes innervated on clustered neuromuscular junctions (NMJs), MN-driven myotube contractions, and increases in cytosolic Ca2+ upon stimulation. CONCLUSIONS: This organized and functional in vitro MU model provides an opportunity to study pathological events involved in NMDs and peripheral neuropathies, and can serve as a platform for physiological and pharmacological studies such as modeling and drug screening. Technically, the rational of this 3D bilayer hydrogel co-culture system exploits multiple distinct properties of hydrogels, facilitating effective and efficient co-culturing of diverse cell types for tissue engineering.

3.
Int J Mol Sci ; 24(5)2023 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-36902410

RESUMEN

All-trans-retinoic Acid (atRA) is the principal active metabolite of Vitamin A, essential for various biological processes. The activities of atRA are mediated by nuclear RA receptors (RARs) to alter gene expression (canonical activities) or by cellular retinoic acid binding protein 1 (CRABP1) to rapidly (minutes) modulate cytosolic kinase signaling, including calcium calmodulin-activated kinase 2 (CaMKII) (non-canonical activities). Clinically, atRA-like compounds have been extensively studied for therapeutic applications; however, RAR-mediated toxicity severely hindered the progress. It is highly desirable to identify CRABP1-binding ligands that lack RAR activity. Studies of CRABP1 knockout (CKO) mice revealed CRABP1 to be a new therapeutic target, especially for motor neuron (MN) degenerative diseases where CaMKII signaling in MN is critical. This study reports a P19-MN differentiation system, enabling studies of CRABP1 ligands in various stages of MN differentiation, and identifies a new CRABP1-binding ligand C32. Using the P19-MN differentiation system, the study establishes C32 and previously reported C4 as CRABP1 ligands that can modulate CaMKII activation in the P19-MN differentiation process. Further, in committed MN cells, elevating CRABP1 reduces excitotoxicity-triggered MN death, supporting a protective role for CRABP1 signaling in MN survival. C32 and C4 CRABP1 ligands were also protective against excitotoxicity-triggered MN death. The results provide insight into the potential of signaling pathway-selective, CRABP1-binding, atRA-like ligands in mitigating MN degenerative diseases.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Neuronas Motoras , Degeneración Nerviosa , Receptores de Ácido Retinoico , Tretinoina , Animales , Ratones , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Receptores de Ácido Retinoico/metabolismo , Tretinoina/metabolismo , Neuronas Motoras/patología
4.
J Cell Signal ; 4(4): 151-162, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38706516

RESUMEN

Mitochondrial dysfunction underlines neurodegenerative diseases which are mostly characterized by progressive degeneration of neurons. We previously reported that Cellular retinoic acid Binding protein 1 (Crabp1) knockout (CKO) mice spontaneously developed age-dependent motor degeneration, with defects accumulated in spinal motor neurons (MNs), the only cell type in spinal cord that expresses CRABP1. Here we uncovered that mitochondrial DNA (mtDNA) content and the expression of genes involved in respiration were significantly reduced in CKO mouse spinal cord, accompanied by significantly elevated reactive oxygen species (ROS) and unfolded protein load, indicating that CRABP1 deficiency caused mitochondrial dysfunction. Further analyses of spinal cord tissues revealed significant reduction in the expression and activity of superoxide dismutase 2 (SOD2), as well as defected mitochondrial unfolded protein response (UPRmt) pathway, specifically an increase in ATF5 mRNA but not its protein level, which suggested failure in the translational response of ATF5 in CKO. Consistently, eukaryotic initiation factor-2α, (eIF2α) phosphorylation was reduced in CKO spinal cord. In a CRABP1 knockdown MN1 model, siCrabp1-MN1, we validated the cell-autonomous function of CRABP1 in modulating the execution of UPRmt. This study reveals a new functional role for CRABP1 in the execution of mitochondrial stress response, that CRABP1 modulates eIF2α phosphorylation thereby contributing to ATF5 translational response that is needed to mitigate mitochondria stress.

5.
Int J Mol Sci ; 22(22)2021 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-34830120

RESUMEN

Retinoic acid (RA), the principal active metabolite of vitamin A, is known to be involved in stress-related disorders. However, its mechanism of action in this regard remains unclear. This study reports that, in mice, endogenous cellular RA binding protein 1 (Crabp1) is highly expressed in the hypothalamus and pituitary glands. Crabp1 knockout (CKO) mice exhibit reduced anxiety-like behaviors accompanied by a lowered stress induced-corticosterone level. Furthermore, CRH/DEX tests show an increased sensitivity (hypersensitivity) of their feedback inhibition in the hypothalamic-pituitary-adrenal (HPA) axis. Gene expression studies show reduced FKBP5 expression in CKO mice; this would decrease the suppression of glucocorticoid receptor (GR) signaling thereby enhancing their feedback inhibition, consistent with their dampened corticosterone level and anxiety-like behaviors upon stress induction. In AtT20, a pituitary gland adenoma cell line elevating or reducing Crabp1 level correspondingly increases or decreases FKBP5 expression, and its endogenous Crabp1 level is elevated by GR agonist dexamethasone or RA treatment. This study shows, for the first time, that Crabp1 regulates feedback inhibition of the the HPA axis by modulating FKBP5 expression. Furthermore, RA and stress can increase Crabp1 level, which would up-regulate FKBP5 thereby de-sensitizing feedback inhibition of HPA axis (by decreasing GR signaling) and increasing the risk of stress-related disorders.


Asunto(s)
Ansiedad/fisiopatología , Homeostasis/fisiología , Sistema Hipotálamo-Hipofisario/metabolismo , Sistema Hipófiso-Suprarrenal/metabolismo , Receptores de Ácido Retinoico/metabolismo , Proteínas de Unión a Tacrolimus/metabolismo , Animales , Ansiedad/genética , Línea Celular Tumoral , Dexametasona/farmacología , Retroalimentación Fisiológica/efectos de los fármacos , Retroalimentación Fisiológica/fisiología , Regulación de la Expresión Génica/efectos de los fármacos , Homeostasis/genética , Hipotálamo/metabolismo , Masculino , Aprendizaje por Laberinto/fisiología , Ratones Endogámicos C57BL , Ratones Noqueados , Actividad Motora/genética , Actividad Motora/fisiología , Hipófisis/metabolismo , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Receptores de Ácido Retinoico/genética , Proteínas de Unión a Tacrolimus/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA