Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-38469150

RESUMEN

As microtubule-organizing centers, centrosomes direct assembly of the bipolar mitotic spindle required for chromosome segregation and genome stability. Centrosome activity requires the dynamic assembly of pericentriolar material (PCM), the composition and organization of which changes throughout the cell cycle. Recent studies highlight the conserved localization of several mRNAs encoded from centrosome-associated genes enriched at centrosomes, including Pericentrin-like protein (Plp) mRNA. However, relatively little is known about how RNAs localize to centrosomes and influence centrosome function. Here, we examine mechanisms underlying the subcellular localization of Plp mRNA. We find that Plp mRNA localization is puromycin-sensitive, and the Plp coding sequence is both necessary and sufficient for RNA localization, consistent with a co-translational transport mechanism. We identify regions within the Plp coding sequence that regulate Plp mRNA localization. Finally, we show that protein-protein interactions critical for elaboration of the PCM scaffold permit RNA localization to centrosomes. Taken together, these findings inform the mechanistic basis of Plp mRNA localization and lend insight into the oscillatory enrichment of RNA at centrosomes.

2.
Genetics ; 226(4)2024 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-38290049

RESUMEN

Mutations in SETD2 are among the most prevalent drivers of renal cell carcinoma (RCC). We identified a novel single nucleotide polymorphism (SNP) in SETD2, E902Q, within a subset of RCC patients, which manifests as both an inherited or tumor-associated somatic mutation. To determine if the SNP is biologically functional, we used CRISPR-based genome editing to generate the orthologous mutation within the Drosophila melanogaster Set2 gene. In Drosophila, the homologous amino acid substitution, E741Q, reduces H3K36me3 levels comparable to Set2 knockdown, and this loss is rescued by reintroduction of a wild-type Set2 transgene. We similarly uncovered significant defects in spindle morphogenesis, consistent with the established role of SETD2 in methylating α-Tubulin during mitosis to regulate microtubule dynamics and maintain genome stability. These data indicate the Set2 E741Q SNP affects both histone methylation and spindle integrity. Moreover, this work further suggests the SETD2 E902Q SNP may hold clinical relevance.


Asunto(s)
Carcinoma de Células Renales , Proteínas de Drosophila , Neoplasias Renales , Animales , Humanos , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/metabolismo , Carcinoma de Células Renales/patología , Histonas/genética , Histonas/metabolismo , Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Polimorfismo de Nucleótido Simple , Neoplasias Renales/genética , Neoplasias Renales/metabolismo , Neoplasias Renales/patología , Huso Acromático/genética , Huso Acromático/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo
3.
Curr Protoc ; 3(10): e924, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37861353

RESUMEN

The rapid succession of events during development poses an inherent challenge to achieve precise synchronization required for rigorous, quantitative phenotypic and genotypic analyses in multicellular model organisms. Drosophila melanogaster is an indispensable model for studying the development and function of higher order organisms due to extensive genome homology, tractability, and its relatively short lifespan. Presently, nine Nobel prizes serve as a testament to the utility of this elegant model system. Ongoing advancements in genetic and molecular tools allow for the underlying mechanisms of human disease to be investigated in Drosophila. However, the absence of a method to precisely age-match tissues during larval development prevents further capitalization of this powerful model organism. Drosophila spends nearly half of its life cycle progressing through three morphologically distinct larval instar stages, during which the imaginal discs, precursors of mature adult external structures (e.g., eyes, legs, wings), grow and develop distinct cell fates. Other tissues, such as the central nervous system, undergo massive morphological changes during larval development. While these three larval stages and subsequent pupal stages have historically been identified based on the number of hours post egg-laying under standard laboratory conditions, a reproducible, efficient, and inexpensive method is required to accurately age-match larvae within the third instar. The third instar stage is of particular interest, as this developmental stage spans a 48-hr window during which larval tissues switch from proliferative to differentiation programs. Moreover, some genetic manipulations can lead to developmental delays, further compounding the need for precise age-matching between control and experimental samples. This article provides a protocol optimized for synchronous staging of Drosophila third instar larvae by colorimetric characterization and is useful for age-matching a variety of tissues for numerous downstream applications. We also provide a brief discussion of the technical challenges associated with successful application of this protocol. © 2023 Wiley Periodicals LLC. Basic Protocol: Synchronization of third instar Drosophila larvae.


Asunto(s)
Drosophila melanogaster , Drosophila , Animales , Humanos , Drosophila melanogaster/anatomía & histología , Drosophila melanogaster/genética , Larva/fisiología , Colorimetría , Pupa
4.
Mol Biol Cell ; 33(14): ae3, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36399627

RESUMEN

It is my great honor to receive the 2022 Günter Blobel Early Career Award from the American Society for Cell Biology. Reflecting upon my research and career trajectory, I recognize the incredible support of my mentors and the hard work of everyone within my lab. I have always relied on a network of advisors and colleagues who supported me throughout my scientific journey. To better support my own trainees, I endeavor to pass on lessons learned while continuously developing and strengthening my own leadership potential. I am a relentless advocate for the success of my trainees, a legacy I pass on from my own mentors.


Asunto(s)
Distinciones y Premios , Mentores , Estados Unidos , Humanos , Investigadores , Liderazgo , Logro
5.
Development ; 149(13)2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35661190

RESUMEN

As the microtubule-organizing centers of most cells, centrosomes engineer the bipolar mitotic spindle required for error-free mitosis. Drosophila Pericentrin-like protein (PLP) directs formation of a pericentriolar material (PCM) scaffold required for PCM organization and microtubule-organizing center function. Here, we investigate the post-transcriptional regulation of Plp mRNA. We identify conserved binding sites for cytoplasmic polyadenylation element binding (CPEB) proteins within the Plp 3'-untranslated region and examine the role of the CPEB ortholog Oo18 RNA-binding protein (Orb) in Plp mRNA regulation. Our data show that Orb interacts biochemically with Plp mRNA to promote polyadenylation and PLP protein expression. Loss of orb, but not orb2, diminishes PLP levels in embryonic extracts. Consequently, PLP localization to centrosomes and its function in PCM scaffolding are compromised in orb mutant embryos, resulting in genomic instability and embryonic lethality. Moreover, we find that PLP overexpression restores centrosome scaffolding and rescues the cell division defects caused by orb depletion. Our data suggest that Orb modulates PLP expression at the level of Plp mRNA polyadenylation and demonstrates that the post-transcriptional regulation of core, conserved centrosomal mRNAs is crucial for centrosome function.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , Animales , Antígenos , Centrosoma/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Mitosis/genética , Poliadenilación/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo
6.
Mol Biol Cell ; 33(5)2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35420887

RESUMEN

Protein localization is intrinsic to cellular function and specialized activities, such as migration or proliferation. Many localized proteins enrich at defined organelles, forming subdomains of functional activity further specified by interacting protein assemblies. One well-studied organelle showing dynamic, functional changes in protein composition is the centrosome. Centrosomes are microtubule-organizing centers with diverse cellular functions largely defined by the composition of the pericentriolar material, an ordered matrix of proteins organized around a central pair of centrioles. Also localizing to the pericentriolar material are mRNAs. Although RNA was identified at centrosomes decades ago, the characterization of specific RNA transcripts and their functional contributions to centrosome biology remained largely unstudied. While the identification of RNA localized to centrosomes accelerated with the development of high-throughput screening methods, this discovery still outpaces functional characterization. Recent work indicates RNA localized to centrosomes is biologically significant and further implicates centrosomes as sites for local protein synthesis. Distinct RNA localization and translational activities likely contribute to the diversity of centrosome functions within cells.


Asunto(s)
Centriolos , Centrosoma , Centriolos/metabolismo , Centrosoma/metabolismo , Cilios/metabolismo , Centro Organizador de los Microtúbulos , Proteínas/metabolismo , ARN/metabolismo
7.
G3 (Bethesda) ; 12(2)2022 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-35100335

RESUMEN

Centrosomes are microtubule-organizing centers that duplicate exactly once to organize the bipolar mitotic spindle required for error-free mitosis. Prior work indicated that Drosophila centrocortin (cen) is required for normal centrosome separation, although a role in centriole duplication was not closely examined. Through time-lapse recordings of rapid syncytial divisions, we monitored centriole duplication and the kinetics of centrosome separation in control vs cen null embryos. Our data suggest that although cen is dispensable for centriole duplication, it contributes to centrosome separation.


Asunto(s)
Centriolos , Drosophila , Animales , Centrosoma , Drosophila/genética , Mitosis/genética , Huso Acromático
8.
Front Cell Dev Biol ; 9: 782802, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34805187

RESUMEN

Centrosomes are multifunctional organelles tasked with organizing the microtubule cytoskeleton required for genome stability, intracellular trafficking, and ciliogenesis. Contributing to the diversity of centrosome functions are cell cycle-dependent oscillations in protein localization and post-translational modifications. Less understood is the role of centrosome-localized messenger RNA (mRNA). Since its discovery, the concept of nucleic acids at the centrosome was controversial, and physiological roles for centrosomal mRNAs remained muddled and underexplored. Over the past decades, however, transcripts, RNA-binding proteins, and ribosomes were detected at the centrosome in various organisms and cell types, hinting at a conservation of function. Indeed, recent work defines centrosomes as sites of local protein synthesis, and defined mRNAs were recently implicated in regulating centrosome functions. In this review, we summarize the evidence for the presence of mRNA at the centrosome and the current work that aims to unravel the biological functions of mRNA localized to centrosomes.

9.
Elife ; 102021 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-33459591

RESUMEN

Transcriptional quiescence, an evolutionarily conserved trait, distinguishes the embryonic primordial germ cells (PGCs) from their somatic neighbors. In Drosophila melanogaster, PGCs from embryos maternally compromised for germ cell-less (gcl) misexpress somatic genes, possibly resulting in PGC loss. Recent studies documented a requirement for Gcl during proteolytic degradation of the terminal patterning determinant, Torso receptor. Here we demonstrate that the somatic determinant of female fate, Sex-lethal (Sxl), is a biologically relevant transcriptional target of Gcl. Underscoring the significance of transcriptional silencing mediated by Gcl, ectopic expression of a degradation-resistant form of Torso (torsoDeg) can activate Sxl transcription in PGCs, whereas simultaneous loss of torso-like (tsl) reinstates the quiescent status of gcl PGCs. Intriguingly, like gcl mutants, embryos derived from mothers expressing torsoDeg in the germline display aberrant spreading of pole plasm RNAs, suggesting that mutual antagonism between Gcl and Torso ensures the controlled release of germ-plasm underlying the germline/soma distinction.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila melanogaster/embriología , Péptidos y Proteínas de Señalización Intercelular/genética , Proteínas de Unión al ARN/genética , Proteínas Tirosina Quinasas Receptoras/genética , Procesos de Determinación del Sexo , Animales , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Embrión no Mamífero/embriología , Femenino , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Masculino , Proteínas de Unión al ARN/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Transcripción Genética
10.
J Cell Biol ; 219(12)2020 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-33196763

RESUMEN

Centrosomes are microtubule-organizing centers required for error-free mitosis and embryonic development. The microtubule-nucleating activity of centrosomes is conferred by the pericentriolar material (PCM), a composite of numerous proteins subject to cell cycle-dependent oscillations in levels and organization. In diverse cell types, mRNAs localize to centrosomes and may contribute to changes in PCM abundance. Here, we investigate the regulation of mRNA localization to centrosomes in the rapidly cycling Drosophila melanogaster embryo. We find that RNA localization to centrosomes is regulated during the cell cycle and developmentally. We identify a novel role for the fragile-X mental retardation protein in the posttranscriptional regulation of a model centrosomal mRNA, centrocortin (cen). Further, mistargeting cen mRNA is sufficient to alter cognate protein localization to centrosomes and impair spindle morphogenesis and genome stability.


Asunto(s)
Centrosoma/metabolismo , Proteínas de Drosophila/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Mitosis , ARN Mensajero/metabolismo , Huso Acromático/metabolismo , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , ARN Mensajero/genética , Huso Acromático/genética
11.
Biol Open ; 9(10)2020 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-32973081

RESUMEN

The subcellular localization of objects, such as organelles, proteins, or other molecules, instructs cellular form and function. Understanding the underlying spatial relationships between objects through colocalization analysis of microscopy images is a fundamental approach used to inform biological mechanisms. We generated an automated and customizable computational tool, the SubcellularDistribution pipeline, to facilitate object-based image analysis from three-dimensional (3D) fluorescence microcopy images. To test the utility of the SubcellularDistribution pipeline, we examined the subcellular distribution of mRNA relative to centrosomes within syncytial Drosophila embryos. Centrosomes are microtubule-organizing centers, and RNA enrichments at centrosomes are of emerging importance. Our open-source and freely available software detected RNA distributions comparably to commercially available image analysis software. The SubcellularDistribution pipeline is designed to guide the user through the complete process of preparing image analysis data for publication, from image segmentation and data processing to visualization.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Transporte Biológico , Procesamiento de Imagen Asistido por Computador/métodos , Espacio Intracelular/metabolismo , Microscopía , Programas Informáticos , Algoritmos , Imagen Molecular
12.
Biochem Soc Trans ; 48(5): 2101-2115, 2020 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-32897294

RESUMEN

Microcephaly is a rare, yet devastating, neurodevelopmental condition caused by genetic or environmental insults, such as the Zika virus infection. Microcephaly manifests with a severely reduced head circumference. Among the known heritable microcephaly genes, a significant proportion are annotated with centrosome-related ontologies. Centrosomes are microtubule-organizing centers, and they play fundamental roles in the proliferation of the neuronal progenitors, the neural stem cells (NSCs), which undergo repeated rounds of asymmetric cell division to drive neurogenesis and brain development. Many of the genes, pathways, and developmental paradigms that dictate NSC development in humans are conserved in Drosophila melanogaster. As such, studies of Drosophila NSCs lend invaluable insights into centrosome function within NSCs and help inform the pathophysiology of human microcephaly. This mini-review will briefly survey causative links between deregulated centrosome functions and microcephaly with particular emphasis on insights learned from Drosophila NSCs.


Asunto(s)
Centrosoma/ultraestructura , Drosophila melanogaster/metabolismo , Células-Madre Neurales/metabolismo , Animales , Encéfalo/embriología , Encéfalo/crecimiento & desarrollo , División Celular , Proliferación Celular , Modelos Animales de Enfermedad , Humanos , Microcefalia/metabolismo , Centro Organizador de los Microtúbulos/metabolismo , Mitosis , Neurogénesis , Neuronas , Células Madre/citología , Virus Zika , Infección por el Virus Zika/metabolismo
13.
Genesis ; 58(3-4): e23347, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31774613

RESUMEN

Primordial germ cells (PGCs) are the precursors to the adult germline stem cells that are set aside early during embryogenesis and specified through the inheritance of the germ plasm, which contains the mRNAs and proteins that function as the germline fate determinants. In Drosophila melanogaster, formation of the PGCs requires the microtubule and actin cytoskeletal networks to actively segregate the germ plasm from the soma and physically construct the pole buds (PBs) that protrude from the posterior cortex. Of emerging importance is the central role of centrosomes in the coordination of microtubule dynamics and actin organization to promote PGC development. We previously identified a requirement for the centrosome protein Centrosomin (Cnn) in PGC formation. Cnn interacts directly with Pericentrin-like protein (PLP) to form a centrosome scaffold structure required for pericentriolar material recruitment and organization. In this study, we identify a role for PLP at several discrete steps during PGC development. We find PLP functions in segregating the germ plasm from the soma by regulating microtubule organization and centrosome separation. These activities further contribute to promoting PB protrusion and facilitating the distribution of germ plasm in proliferating PGCs.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila/embriología , Drosophila/genética , Células Germinativas/metabolismo , Proteínas de Homeodominio/genética , Animales , Biomarcadores , Centrosoma , Embrión no Mamífero , Desarrollo Embrionario/genética , Regulación del Desarrollo de la Expresión Génica , Genotipo , Microtúbulos/metabolismo , Imagen Molecular , Transporte de Proteínas
14.
Genetics ; 213(3): 877-895, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31558581

RESUMEN

Heterochromatin-mediated repression is essential for controlling the expression of transposons and for coordinated cell type-specific gene regulation. The small ovary (sov) locus was identified in a screen for female-sterile mutations in Drosophila melanogaster, and mutants show dramatic ovarian morphogenesis defects. We show that the null sov phenotype is lethal and map the locus to the uncharacterized gene CG14438, which encodes a nuclear zinc-finger protein that colocalizes with the essential Heterochromatin Protein 1 (HP1a). We demonstrate Sov functions to repress inappropriate gene expression in the ovary, silence transposons, and suppress position-effect variegation in the eye, suggesting a central role in heterochromatin stabilization.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Heterocromatina/metabolismo , Animales , Ojo Compuesto de los Artrópodos/crecimiento & desarrollo , Ojo Compuesto de los Artrópodos/metabolismo , Elementos Transponibles de ADN , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster , Femenino , Heterocromatina/genética , Mutación con Pérdida de Función , Ovario/crecimiento & desarrollo , Ovario/metabolismo , Dedos de Zinc
15.
Traffic ; 19(7): 496-502, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29653028

RESUMEN

At the nexus of specialized cellular responses are localized enrichments of protein activity. The localization of messenger RNA (mRNA) coupled with translational control often plays a crucial role in the generation of protein concentrations at defined subcellular domains. Although mRNA localization is classically associated with large specialized cells, such as neurons and embryos, RNA localization is a highly conserved paradigm of post-transcriptional regulation observed in diverse cellular contexts. Functions of localized mRNAs extend far beyond the well-studied examples of neuronal polarization and developmental patterning. Since the initial discovery of the intracellular localization of cytoskeletal mRNAs within migrating cells, hundreds of mRNAs are now known to be enriched at specific organelles where they contribute to cell function. In this short review, we discuss basic principles regulating RNA localization and consider the contribution of localized mRNA to several essential cellular behaviors. We consider RNA localization as a mechanism with widespread implications for cellular function.


Asunto(s)
Transporte Axonal , ARN Mensajero/metabolismo , Animales , Humanos , Neurogénesis , Neuronas/metabolismo
16.
Cell Rep ; 18(4): 831-839, 2017 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-28122234

RESUMEN

The primordial germ cells (PGCs) specified during embryogenesis serve as progenitors to the adult germline stem cells. In Drosophila, the proper specification and formation of PGCs require both centrosomes and germ plasm, which contains the germline determinants. Centrosomes are microtubule (MT)-organizing centers that ensure the faithful segregation of germ plasm into PGCs. To date, mechanisms that modulate centrosome behavior to engineer PGC development have remained elusive. Only one germ plasm component, Germ cell-less (Gcl), is known to play a role in PGC formation. Here, we show that Gcl engineers PGC formation by regulating centrosome dynamics. Loss of gcl leads to aberrant centrosome separation and elaboration of the astral MT network, resulting in inefficient germ plasm segregation and aborted PGC cellularization. Importantly, compromising centrosome separation alone is sufficient to mimic the gcl loss-of-function phenotypes. We conclude Gcl functions as a key regulator of centrosome separation required for proper PGC development.


Asunto(s)
Centrosoma/metabolismo , Proteínas de Drosophila/metabolismo , Células Germinativas/metabolismo , Proteínas Nucleares/metabolismo , Animales , Segregación Cromosómica/genética , Drosophila/crecimiento & desarrollo , Proteínas de Drosophila/genética , Embrión no Mamífero/metabolismo , Células Germinativas/citología , Péptidos y Proteínas de Señalización Intercelular , Cinesinas/antagonistas & inhibidores , Cinesinas/genética , Cinesinas/metabolismo , Microscopía Fluorescente , Proteínas Nucleares/genética , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Imagen de Lapso de Tiempo , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
17.
Chromosome Res ; 24(1): 5-17, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26658800

RESUMEN

The maintenance of genome stability is critical for proper cell function, and loss of this stability contributes to many human diseases and developmental disorders. Therefore, cells have evolved partially redundant mechanisms to monitor and protect the genome. One subcellular organelle implicated in the maintenance of genome stability is the centrosome, best known as the primary microtubule organizing center of most animal cells. Centrosomes serve many different roles throughout the cell cycle, and many of those roles, including mitotic spindle assembly, nucleation of the interphase microtubule array, DNA damage response, and efficient cell cycle progression, have been proposed to help maintain genome stability. As a result, the centrosome is itself a highly regulated entity. Here, we review evidence concerning the significance of the centrosome in promoting genome integrity. Recent advances permitting acute and persistent centrosome removal suggest we still have much to learn regarding the specific function and actual importance of centrosomes in different contexts, as well as how cells may compensate for centrosome dysfunction to maintain the integrity of the genome. Although many animal cells survive and proliferate in the absence of centrosomes, they do so aberrantly. Based on these and other studies, we conclude that centrosomes serve as critical, multifunctional organelles that promote genome stability.


Asunto(s)
Ciclo Celular/fisiología , Centrosoma/metabolismo , Genoma Humano/fisiología , Inestabilidad Genómica/fisiología , Animales , Humanos
18.
J Cell Biol ; 210(1): 79-97, 2015 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-26150390

RESUMEN

Pericentriolar material (PCM) mediates the microtubule (MT) nucleation and anchoring activity of centrosomes. A scaffold organized by Centrosomin (Cnn) serves to ensure proper PCM architecture and functional changes in centrosome activity with each cell cycle. Here, we investigate the mechanisms that spatially restrict and temporally coordinate centrosome scaffold formation. Focusing on the mitotic-to-interphase transition in Drosophila melanogaster embryos, we show that the elaboration of the interphase Cnn scaffold defines a major structural rearrangement of the centrosome. We identify an unprecedented role for Pericentrin-like protein (PLP), which localizes to the tips of extended Cnn flares, to maintain robust interphase centrosome activity and promote the formation of interphase MT asters required for normal nuclear spacing, centrosome segregation, and compartmentalization of the syncytial embryo. Our data reveal that Cnn and PLP directly interact at two defined sites to coordinate the cell cycle-dependent rearrangement and scaffolding activity of the centrosome to permit normal centrosome organization, cell division, and embryonic viability.


Asunto(s)
Centrosoma/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Homeodominio/metabolismo , Interfase , Secuencia de Aminoácidos , Animales , Proteínas de Unión a Calmodulina , Segregación Cromosómica , Drosophila melanogaster , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Inestabilidad Genómica , Microtúbulos/metabolismo , Mitosis , Datos de Secuencia Molecular , Dominios y Motivos de Interacción de Proteínas , Transporte de Proteínas
19.
Mol Biol Cell ; 25(18): 2682-94, 2014 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-25031429

RESUMEN

Pericentrin is a critical centrosomal protein required for organizing pericentriolar material (PCM) in mitosis. Mutations in pericentrin cause the human genetic disorder Majewski/microcephalic osteodysplastic primordial dwarfism type II, making a detailed understanding of its regulation extremely important. Germaine to pericentrin's function in organizing PCM is its ability to localize to the centrosome through the conserved C-terminal PACT domain. Here we use Drosophila pericentrin-like-protein (PLP) to understand how the PACT domain is regulated. We show that the interaction of PLP with calmodulin (CaM) at two highly conserved CaM-binding sites in the PACT domain controls the proper targeting of PLP to the centrosome. Disrupting the PLP-CaM interaction with single point mutations renders PLP inefficient in localizing to centrioles in cultured S2 cells and Drosophila neuroblasts. Although levels of PCM are unaffected, it is highly disorganized. We also demonstrate that basal body formation in the male testes and the production of functional sperm does not rely on the PLP-CaM interaction, whereas production of functional mechanosensory neurons does.


Asunto(s)
Cuerpos Basales/metabolismo , Calmodulina/metabolismo , Proteínas de Drosophila/metabolismo , Neuronas/fisiología , Espermatozoides/fisiología , Secuencia de Aminoácidos , Animales , Proteínas de Unión a Calmodulina , Línea Celular , Centriolos/fisiología , Drosophila melanogaster , Masculino , Mecanotransducción Celular , Datos de Secuencia Molecular , Dominios y Motivos de Interacción de Proteínas , Transporte de Proteínas , Motilidad Espermática , Espermatogénesis
20.
J Vis Exp ; (89)2014 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-25046336

RESUMEN

Stem cells divide asymmetrically to generate two progeny cells with unequal fate potential: a self-renewing stem cell and a differentiating cell. Given their relevance to development and disease, understanding the mechanisms that govern asymmetric stem cell division has been a robust area of study. Because they are genetically tractable and undergo successive rounds of cell division about once every hour, the stem cells of the Drosophila central nervous system, or neuroblasts, are indispensable models for the study of stem cell division. About 100 neural stem cells are located near the surface of each of the two larval brain lobes, making this model system particularly useful for live imaging microscopy studies. In this work, we review several approaches widely used to visualize stem cell divisions, and we address the relative advantages and disadvantages of those techniques that employ dissociated versus intact brain tissues. We also detail our simplified protocol used to explant whole brains from third instar larvae for live cell imaging and fixed analysis applications.


Asunto(s)
Encéfalo/citología , Drosophila/citología , Microscopía Confocal/métodos , Células-Madre Neurales/citología , Animales , División Celular/fisiología , Larva
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...