Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 15423, 2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37723176

RESUMEN

We describe here a new process for the synthesis of very high quality 2D Covalent Organic Frameworks (COFs), such a C2N and CN carbon nitrides. This process relies on the use of a metallic surface as both a reagent and a support for the coupling of small halogenated building blocks. The conditions of the assembly reaction are chosen so as to leave the inorganic salts by-products on the surface, to further confine the assembly reaction on the surface and increase the quality of the 2D layers. We found that under these conditions, the process directly returns few layers material. The structure/quality of these materials is demonstrated by extensive cross-characterizations at different scales, combining optical microscopy, Scanning Electron Microscopy (SEM)/Transmission Electron Microscopy (TEM) and Energy Dispersive Spectroscopy (EDS). The availability of such very large, high-quality layers of these materials opens interesting perspectives, for example in photochemistry and electronics (intrinsic transport properties, high gap substrate for graphene, etc...).

2.
Langmuir ; 39(12): 4291-4303, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36930733

RESUMEN

Microparticles of polyethylene and polypropylene are largely found in aquatic environments because they are the most produced and persistent plastic materials. Once in biological media, they are covered by a layer of molecules, the so-called corona, mostly composed of proteins. A yeast protein extract from Saccharomyces cerevisiae was used as a protein system to observe interactions in complex biological media. Proteins, acting as surfactants and providing hydrophilic surfaces, allow the dispersion of highly hydrophobic particles in water and stabilize them. After 24 h, the microplastic quantity was up to 1 × 1011 particles per liter, whereas without protein, no particles remained in solution. Label-free imaging of the protein corona by synchrotron radiation deep UV fluorescence microscopy (SR-DUV) was performed. In situ images of the protein corona were obtained, and the adsorbed protein quantity, the coverage rate, and the corona heterogeneity were determined. The stability kinetics of the microplastic suspensions were measured by light transmission using a Turbiscan analyzer. Together, the microscopic and kinetics results demonstrate that the protein corona can very efficiently stabilize microplastics in solution provided that the protein corona quality is sufficient. Microplastic stability depends on different parameters such as the particle's intrinsic properties (size, density, hydrophobicity) and the protein corona formation that changes the particle wettability, electrostatic charge, and steric hindrance. By controlling these parameters with proteins, it becomes possible to keep microplastics in and out of solution, paving the way for applications in the field of microplastic pollution control and remediation.


Asunto(s)
Corona de Proteínas , Contaminantes Químicos del Agua , Microplásticos/química , Plásticos , Corona de Proteínas/química , Polipropilenos , Agua , Contaminantes Químicos del Agua/química
3.
Int J Mol Sci ; 23(15)2022 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-35897833

RESUMEN

X-ray photoelectron spectroscopy of bovine serum albumin (BSA) in a liquid jet is used to investigate the electronic structure of a solvated protein, yielding insight into charge transfer mechanisms in biological systems in their natural environment. No structural damage was observed in BSA following X-ray photoelectron spectroscopy in a liquid jet sample environment. Carbon and nitrogen atoms in different chemical environments were resolved in the X-ray photoelectron spectra of both solid and solvated BSA. The calculations of charge distributions demonstrate the difficulty of assigning chemical contributions in complex systems in an aqueous environment. The high-resolution X-ray core electron spectra recorded are unchanged upon solvation. A comparison of the valence bands of BSA in both phases is also presented. These bands display a higher sensitivity to solvation effects. The ionization energy of the solvated BSA is determined at 5.7 ± 0.3 eV. Experimental results are compared with theoretical calculations to distinguish the contributions of various molecular components to the electronic structure. This comparison points towards the role of water in hole delocalization in proteins.


Asunto(s)
Albúmina Sérica , Agua , Electrónica , Espectroscopía de Fotoelectrones , Albúmina Sérica Bovina , Agua/química
4.
Nanoscale ; 13(46): 19650-19662, 2021 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-34816859

RESUMEN

Inspired by a natural nano-mineral known as imogolite, aluminosilicate inorganic nanotubes are appealing systems for photocatalysis. Here, we studied two types of synthetic imogolites: one is completely hydrophilic (IMO-OH), while the other has a hydrophilic exterior and a hydrophobic interior (IMO-CH3), enabling the encapsulation of organic molecules. We combined UV-Vis diffuse reflectance spectroscopy of imogolite powders and X-ray photoelectron spectroscopy of deposited imogolite films and isolated nanotubes agglomerates to obtain not only the band structure, but also the quantitative intra-wall polarization of both synthetic imogolites for the first time. The potential difference across the imogolite wall was determined to be 0.7 V for IMO-OH and around 0.2 V for IMO-CH3. The high curvature of the nanotubes, together with the thinness of their wall, favors efficient spontaneous charge separation and electron exchange reactions on both the internal and external nanotube surfaces. In addition, the positions of their valence and conduction band edges make them interesting candidates for co-catalysts or doped catalysts for water splitting, among other possible photocatalytic reactions relevant to energy and the environment.

5.
Nanomaterials (Basel) ; 11(10)2021 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-34685112

RESUMEN

The present study aims to compare the early stages of graphitization of the same DND source for two annealing atmospheres (primary vacuum, argon at atmospheric pressure) in an identical set-up. DND samples are finely characterized by a combination of complementary techniques (FTIR, Raman, XPS, HR-TEM) to highlight the induced modifications for temperature up to 1100 °C. The annealing atmosphere has a significant impact on the graphitization kinetics with a higher fraction of sp2-C formed under vacuum compared to argon for the same temperature. Whatever the annealing atmosphere, carbon hydrogen bonds are created at the DND surface during annealing according to FTIR. A "nano effect", specific to the <10 nm size of DND, exalts the extreme surface chemistry in XPS analysis. According to HR-TEM images, the graphitization is limited to the first outer shell even for DND annealed at 1100 °C under vacuum.

6.
Molecules ; 26(18)2021 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-34577192

RESUMEN

Achieving the full potential of magnesium-ion batteries (MIBs) is still a challenge due to the lack of adequate electrodes or electrolytes. Grignard-based electrolytes show excellent Mg plating/stripping, but their incompatibility with oxide cathodes restricts their use. Conventional electrolytes like bis(trifluoromethanesulfonyl)imide ((Mg(TFSI)2) solutions are incompatible with Mg metal, which hinders their application in high-energy Mg batteries. In this regard, alloys can be game changers. The insertion/extraction of Mg2+ in alloys is possible in conventional electrolytes, suggesting the absence of a passivation layer or the formation of a conductive surface layer. Yet, the role and influence of this layer on the alloys performance have been studied only scarcely. To evaluate the reactivity of alloys, we studied InSb as a model material. Ex situ X-ray photoelectron spectroscopy (XPS) and electrochemical impedance spectroscopy were used to investigate the surface behavior of InSb in both Grignard and conventional Mg(TFSI)2/DME electrolytes. For the Grignard electrolyte, we discovered an intrinsic instability of both solvent and salt against InSb. XPS showed the formation of a thick surface layer consisting of hydrocarbon species and degradation products from the solvent (THF) and salt (C2H5MgCl-(C2H5)2AlCl). On the contrary, this study highlighted the stability of InSb in Mg(TFSI)2 electrolyte.

7.
Talanta ; 234: 122619, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34364428

RESUMEN

The market for nano-additive materials has been growing exponentially since 2012, with almost 5040 consumer products containing nanoparticles in 2021. In parallel, the increasing recommendations, definitions and legislations underline the need for traceability of manufactured nanoparticles and for methods able to identify and quantify the "nano" dimensional character in manufactured product. From a multi-technic approach, this paper aims to compare the mesurands extracted from SAXS/BET (specific surface area) and SEM (diameter equivalent to a projected surface area) on different TiO2 powder issued from referenced, synthesized materials, raw materials (additives) and extracted materials from manufactured products. The influence of various parameters such as the anisotropic factor, the interaction between particles, the size distribution and the extraction steps are discussed to illustrate their impact on the diameter values issued from two different measurands. These results illustrate the difficulties in (nano)particles characterization. SEM and SAXS are complementary techniques depending on the level of dimensional characterization required.


Asunto(s)
Nanopartículas , Titanio , Tamaño de la Partícula , Polvos , Dispersión del Ángulo Pequeño , Difracción de Rayos X
8.
Macromol Biosci ; 20(10): e2000157, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32734716

RESUMEN

Polyionenes (PI) with stable positive charges and tunable hydrophobic spacers in the polymer backbone, are shown to be particularly efficient regarding antimicrobial properties. This effect can be modulated since it increases with the length of hydrophobic spacers, i.e., the number of methylene groups between quaternary ammoniums. Now, to further explore these properties and provide efficient antimicrobial surfaces, polyionenes should be grafted onto materials. Here a robust grafting strategy to covalently attach polyionenes is described. The method consisted in a sequential surface chemistry procedure combining polydopamine coating, diazonium-induced polymerization, and polyaddition. To the best of knowledge, grafting of PI onto surfaces is not reported earlier. All chemical steps are characterized in detail via various surface analysis techniques (FTIR, X-ray photoelectron spectroscopy, contact angle, and surface energy measurements). The antibacterial properties of polyionene-grafted surfaces are then studied through bacterial adhesion experiments consisting in enumeration of adherent bacteria (total and viable cultivable cells). PI-grafted surfaces are showed to display effective and versatile bacteriostatic/bactericidal properties associated with a proadhesive effect.


Asunto(s)
Antiinfecciosos/farmacología , Polímeros/química , Adhesión Bacteriana/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Humanos , Pruebas de Sensibilidad Microbiana , Peso Molecular , Espectroscopía de Fotoelectrones , Polimerizacion , Piel/citología , Piel/efectos de los fármacos , Soluciones , Staphylococcus aureus/efectos de los fármacos , Propiedades de Superficie
9.
J Am Chem Soc ; 136(17): 6348-54, 2014 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-24717022

RESUMEN

The development of innovative techniques for the functionalization of carbon nanotubes that preserve their exceptional quality, while robustly enriching their properties, is a central issue for their integration in applications. In this work, we describe the formation of a covalent network of porphyrins around MWNT surfaces. The approach is based on the adsorption of cobalt(II) meso-tetraethynylporphyrins on the nanotube sidewalls followed by the dimerization of the triple bonds via Hay-coupling; during the reaction, the nanotube acts as a template for the formation of the polymeric layer. The material shows an increased stability resulting from the cooperative effect of the multiple π-stacking interactions between the porphyrins and the nanotube and by the covalent links between the porphyrins. The nanotube hybrids were fully characterized and tested as the supported catalyst for the oxygen reduction reaction (ORR) in a series of electrochemical measurements under acidic conditions. Compared to similar systems in which monomeric porphyrins are simply physisorbed, MWNT-CoP hybrids showed a higher ORR activity associated with a number of exchanged electrons close to four, corresponding to the complete reduction of oxygen into water.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA