Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Hazard Mater ; 431: 128613, 2022 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-35359102

RESUMEN

Agricultural soils are exposed to multiple contaminants through the use of agrochemicals or sewage sludge, introducing metals, nanomaterials and others. Among nanomaterials, carbon nanotubes (CNTs) are known for their large surface area and adsorption capabilities, possibly modifying other element behavior. However, to date, very little is known about the impacts of such interactions in agrosystems. In this study, we aimed at understanding the transfer and toxicity of contaminants (Cd, Pb, Zn and CNTs) in microcosms including native soil bacteria, earthworms and lettuce. After a 6 week exposure, no effect of the addition of CNTs to metal contaminated soils was detected on bacterial concentration or earthworm growth. However, in lettuce, an interactive effect between CNTs and metals was highlighted: in the soil containing the highest metal concentrations the addition of 0.1 mg kg-1 CNTs led to a biomass loss (-22%) and a flavonoid concentration increase (+27%). In parallel, the addition of CNTs led to differential impacts on elemental uptake in lettuce leaves possibly related to the soil organic matter content. For earthworms, the addition of 10 mg kg-1 CNTs resulted in an increased body elemental transfer in the soil with the higher organic matter content (Pb: + 34% and Zn: + 25%).


Asunto(s)
Nanotubos de Carbono , Oligoquetos , Contaminantes del Suelo , Animales , Metales/toxicidad , Nanotubos de Carbono/toxicidad , Suelo/química , Contaminantes del Suelo/análisis
2.
BMC Musculoskelet Disord ; 21(1): 90, 2020 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-32041590

RESUMEN

BACKGROUND: Osteoporosis is a highly prevalent disease identified by Dual Energy X-ray Absorptiometry (DEXA) that can be performed in an ambulatory (out-patient) or hospitalized population. We evaluated the use of baseline in-hospital DEXA screening to identify osteoporosis in ambulatory care and hospitalized patients; we also assessed specific risk factors for osteoporosis among these populations. METHODS: We included a baseline initial DEXA from 6406 consecutive patients at our tertiary referral University Hospital. RESULTS: Osteoporosis was diagnosed in 22.3% of the study population. In univariate analysis, osteoporosis risk factors were age, fracture history and low BMI (for all 3 sites), but also corticotherapy (lumbar spine and femoral neck) and male (lumbar spine). In multivariate analysis, age, fracture history, low BMI, and male increased osteoporosis risk. In-hospital screening yielded a higher percentage of osteoporosis positive scans than ambulatory care screening (31.8% vs 18.5%, p < 0.001). In-hospital screening targeted an older and more predominantly male population with a higher fracture history. Z-scores revealed that this difference was not only due to an older age of the population and mainly concerned cortical bone. CONCLUSIONS: In-hospital osteoporosis screening revealed more osteoporosis than screening in ambulatory practice and could be an additional tool to improve the identification and management of osteoporosis. In addition to typical risk factors, we identified male gender as associated with osteoporosis detection in our cohort.


Asunto(s)
Absorciometría de Fotón , Pacientes Internos/estadística & datos numéricos , Tamizaje Masivo , Osteoporosis/epidemiología , Anciano , Anciano de 80 o más Años , Atención Ambulatoria/estadística & datos numéricos , Bélgica/epidemiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Osteoporosis/diagnóstico por imagen , Estudios Retrospectivos
3.
J Contam Hydrol ; 118(1-2): 79-93, 2010 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-20864207

RESUMEN

Regional degradation of groundwater resources by nitrate has become one of the main challenges for water managers worldwide. Regulations have been defined to reverse observed nitrate trends in groundwater bodies, such as the Water Framework Directive and the Groundwater Daughter Directive in the European Union. In such a context, one of the main challenges remains to develop efficient approaches for groundwater quality assessment at regional scale, including quantitative numerical modelling, as a decision support for groundwater management. A new approach combining the use of environmental tracers and the innovative 'Hybrid Finite Element Mixing Cell' (HFEMC) modelling technique is developed to study and forecast the groundwater quality at the regional scale, with an application to a regional chalk aquifer in the Geer basin in Belgium. Tritium data and nitrate time series are used to produce a conceptual model for regional groundwater flow and contaminant transport in the combined unsaturated and saturated zones of the chalk aquifer. This shows that the spatial distribution of the contamination in the Geer basin is essentially linked to the hydrodynamic conditions prevailing in the basin, more precisely to groundwater age and mixing and not to the spatial patterns of land use or local hydrodispersive processes. A three-dimensional regional scale groundwater flow and solute transport model is developed. It is able to reproduce the spatial patterns of tritium and nitrate and the observed nitrate trends in the chalk aquifer and it is used to predict the evolution of nitrate concentrations in the basin. The modelling application shows that the global inertia of groundwater quality is strong in the basin and trend reversal is not expected to occur before the 2015 deadline fixed by the European Water Framework Directive. The expected time required for trend reversal ranges between 5 and more than 50 years, depending on the location in the basin and the expected reduction in nitrate application. To reach a good chemical status, nitrate concentrations in the infiltrating water should be reduced as soon as possible below 50mg/l; however, even in that case, more than 50 years is needed to fully reverse upward trends.


Asunto(s)
Carbonato de Calcio , Modelos Teóricos , Nitratos/análisis , Movimientos del Agua , Abastecimiento de Agua/análisis , Monitoreo del Ambiente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...