Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Comp Physiol B ; 171(2): 91-101, 2001 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-11302536

RESUMEN

To establish whether family origin affects the response of the threespine stickleback (Gasterosteus aculeatus) to thermal acclimation, we examined the rates of feeding, growth, and food conversion, relative tissue and organ masses and activities of a mitochondrial and a glycolytic enzyme in pectoral and axial muscle of individually housed fish from six families during acclimation to 8 degrees C and 23 degrees C. Feeding rates differed among families but were consistently higher in warm-acclimated than cold-acclimated fish. Growth rates differed among families. In four families growth was greater at 8 degrees C; these families generally had higher conversion efficiencies at 8 degrees C than 23 degrees C. For two families, growth was greater at 23 degrees C than 8 degrees C and conversion efficiencies did not differ between 8 degrees C and 23 degrees C. Relative tissue and organ masses (percent axial muscle, hepatosomatic, gut and kidney indices) differed with gender and among families (hepatosomatic, gut and kidney indices) but little with acclimation status. In all families and in both muscles, activities of the mitochondrial enzyme, citrate synthase (CS), were increased by cold acclimation. Axial muscle levels of the glycolytic enzyme, lactate dehydrogenase (LDH), were not affected by thermal acclimation or family origin, but were strongly correlated with the hepatosomatic index and axial muscle protein content. Pectoral muscle levels of LDH were affected by family origin which also influenced the response to thermal acclimation. Similar patterns were observed for specific activities and total muscle contents of these enzymes. Stickleback family origin influenced rates of feeding and growth and the thermal sensitivity of growth rates but not the compensatory increase in muscle CS levels with cold acclimation. The differing thermal sensitivities of growth could reflect distinct strategies for the timing of juvenile growth.


Asunto(s)
Aclimatación/fisiología , Regulación de la Temperatura Corporal/fisiología , Peces/fisiología , Animales , Peso Corporal , Citrato (si)-Sintasa/metabolismo , Frío , Metabolismo Energético/fisiología , Conducta Alimentaria/fisiología , Femenino , Calor , L-Lactato Deshidrogenasa/metabolismo , Masculino , Mitocondrias/enzimología , Desarrollo de Músculos , Músculo Esquelético/enzimología , Músculo Esquelético/crecimiento & desarrollo , Comportamiento de Nidificación , Factores Sexuales
2.
Physiol Biochem Zool ; 74(1): 66-74, 2001.
Artículo en Inglés | MEDLINE | ID: mdl-11226015

RESUMEN

Threespine sticklebacks (Gasterosteus aculeatus) that had been reared in the laboratory under natural photoperiods were acclimated to 23 degrees and 8 degrees C in late spring under increasing day lengths and again in late fall under decreasing day lengths. The parents of these fish were from the anadromous Isle Verte population. In the spring, cold- and warm-acclimated fish grew at the same rates and attained similar condition factors (mass L(-3)), although food intake was considerably higher at 23 degrees C. As both groups had similar increases in mass and condition, the higher axial muscle activities of citrate synthase and phosphofructokinase (measured at 20 degrees C) after cold acclimation were likely a direct response to temperature. Multiple regression analysis showed that axial muscle levels of cytochrome C oxidase and citrate synthase were correlated with the burst swimming speeds of the spring sticklebacks, while growth rates were positively correlated with lactate dehydrogenase levels in pectoral and axial muscles and creatine kinase levels in the axial muscle. In the fall, the fish in both acclimation groups grew little, although they fed at similar rates as in the spring experiment. Overall, the sticklebacks showed lower burst swimming speeds in the fall. In both spring and fall, the burst speeds of cold- and warm-acclimated sticklebacks only differed at warm temperatures. In the spring experiment, the cold-acclimated fish swam faster, whereas in the fall experiment the warm-acclimated fish swam faster despite their lower percentage of axial muscle. Swimming speeds were measured both at a fish's acclimation temperature and after 12 h at the other temperature. Cold-acclimated sticklebacks seem to have more facility in rapidly adjusting to warm temperatures when they have experienced increasing rather than decreasing day lengths, perhaps as a result of the requirements of the spring migration to the intertidal breeding grounds.


Asunto(s)
Aclimatación , Peces/crecimiento & desarrollo , Peces/fisiología , Natación/fisiología , Animales , Citrato (si)-Sintasa/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Músculo Esquelético/fisiología , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...