Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Pediatr Res ; 2024 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-38280953

RESUMEN

BACKGROUND: The microbiological safety of donor milk (DM) is commonly ensured by Holder pasteurization (HoP, 62.5 °C for 30 min) in human milk banks despite its detrimental effects on bioactive factors. We compared the antimicrobial properties of DM after Holder pasteurization treatment or High Hydrostatic Pressure processing (HHP, 350 MPa at 38 °C), a non-thermal substitute for DM sterilization. METHODS: We assessed lactoferrin and lysozyme concentrations in raw, HHP- and HoP-treated pools of DM (n = 8). The impact of both treatments was evaluated on the growth of Escherichia coli and Group B Streptococcus in comparison with control media (n = 4). We also addressed the effect of storage of HHP treated DM over a 6-month period (n = 15). RESULTS: HHP milk demonstrated similar concentrations of lactoferrin compared with raw milk, while it was significantly decreased by HoP. Lysozyme concentrations remained stable regardless of the condition. Although a bacteriostatic effect was observed against Escherichia coli at early timepoints, a sharp bactericidal effect was observed against Group B Streptococcus. Unlike HoP, these results were significant for HHP compared to controls. Stored DM was well and safely preserved by HHP. CONCLUSION: Our study demonstrates that this alternative sterilization method shows promise for use with DM in human milk banks. IMPACT: Antimicrobial activity of donor milk after High Hydrostatic Pressure treatment has not been clearly evaluated. Donor milk lactoferrin is better preserved by High Hydrostatic Pressure than conventional Holder pasteurization, while lysozyme concentration is not affected by either treatment. As with Holder pasteurization, High Hydrostatic Pressure preserves donor milk bacteriostatic activity against E. coli in addition to bactericidal activity against Group B Streptococcus. Donor milk treated by High Hydrostatic Pressure can be stored safely for 6 months.

2.
Nutrients ; 15(24)2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38140362

RESUMEN

The first 1000 days of life is a critical period that contributes significantly to the programming of an individual's future health. Among the many changes that occur during this period early in life, there is growing evidence that the establishment of healthy gut microbiota plays an important role in the prevention of both short- and long-term health problems. Numerous publications suggest that the quality of the gut microbiota colonisation depends on several dietary factors, including breastfeeding. In this respect, a relationship between breastfeeding and the risk of inflammatory bowel disease (IBD) has been suggested. IBDs are chronic intestinal diseases, and perinatal factors may be partly responsible for their onset. We review the existence of links between breastfeeding and IBD based on experimental and clinical studies. Overall, despite encouraging experimental data in rodents, the association between breastfeeding and the development of IBD remains controversial in humans, partly due to the considerable heterogeneity between clinical studies. The duration of exclusive breastfeeding is probably decisive for its lasting effect on IBD. Thus, specific improvements in our knowledge could support dietary interventions targeting the gut microbiome, such as the early use of prebiotics, probiotics or postbiotics, in order to prevent the disease.


Asunto(s)
Microbioma Gastrointestinal , Enfermedades Inflamatorias del Intestino , Probióticos , Humanos , Femenino , Lactancia Materna , Enfermedades Inflamatorias del Intestino/etiología , Enfermedades Inflamatorias del Intestino/prevención & control , Prebióticos
3.
Med Sci (Paris) ; 39(11): 869-875, 2023 Nov.
Artículo en Francés | MEDLINE | ID: mdl-38018931

RESUMEN

Human milk oligosaccharides (HMO) represent the third largest component of human breast milk (BM). The BM level is comprised between 5 to 20 g per liter and they have a great structural complexity with more than 150 HMO characterized to date. In this review, we present a summary of the main experimental and clinical data that have demonstrated their multiple biological roles in infants such as for gut development, microbiota, immune protection and neurodevelopment. Some HMO-enriched infant formulas are available yet, even if their benefits on the infant health remain to be confirmed. Further researches could allow therapeutic use in preterm newborns or in infants with intestinal diseases. Experimental data suggest that they could also be used in the prevention of some chronic diseases with immunometabolic or neurodevelopmental components.


Title: Les oligosaccharides du lait maternel : des rôles majeurs pour le développement de l'enfant et sa santé future. Abstract: En raison de sa capacité à fournir des apports nutritionnels optimaux ainsi que de nombreux facteurs bioactifs, tels que des oligosaccharides, le lait maternel est considéré comme le régime alimentaire optimal pour les nouveau-nés. Les oligosaccharides du lait humain (HMO) constituent le troisième composant du lait maternel. Plus de 150 HMO ont été caractérisés, leur concentration variant de 5 à 20 g/L. Certaines préparations infantiles enrichies en HMO sont désormais disponibles, même si leurs effets sur la santé restent à démontrer. La poursuite des recherches pourrait permettre d'envisager leur utilisation chez les enfants prématurés ou présentant des maladies inflammatoires digestives. Des données expérimentales suggèrent en effet que les HMO pourraient prévenir certaines maladies chroniques à composantes immuno-métaboliques ou neurodéveloppementales. Dans cette revue, nous présentons une synthèse des dernières données montrant les effets biologiques de ces oligosaccharides.


Asunto(s)
Enfermedades Intestinales , Microbiota , Lactante , Niño , Femenino , Recién Nacido , Humanos , Leche Humana/química , Desarrollo Infantil , Oligosacáridos
4.
Front Pediatr ; 11: 1120008, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37842027

RESUMEN

Sterilized donor milk (DM) is frequently used for feeding preterm infants. To date, the effect of different modes of DM sterilization on short-chain fatty acids (SCFAs) remains unknown. We aimed to quantify SCFAs in DM samples after two types of milk sterilization: the Holder pasteurization (HoP) and a high hydrostatic pressure (HP) processing. Eight pooled DM samples were sterilized by HoP (62.5°C for 30 min) or processed by HP (350 MPa at 38°C). Raw DM was used as control. Six SCFAs were quantified by gas chromatography/mass spectrometry. Compared to raw milk, both HoP and HP treatment did not significantly modulate the concentration of acetate, butyrate, propionate and isovalerate in DM. Valerate and isobutyrate were undetectable in DM samples. In conclusion, both HoP and HP processing preserved milk SCFAs at their initial levels in raw human milk.

5.
Nutrients ; 15(18)2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37764826

RESUMEN

BACKGROUND: Human milk banks (HMBs) provide sterilized donor milk (DM) for the feeding of preterm infants. Most HMBs use the standard method of Holder pasteurization (HoP) performed by heating DM at 62.5 °C for 30 min. High hydrostatic pressure (HHP) processing has been proposed as an alternative to HoP. This study aims to evaluate intestinal barrier integrity and microbiota composition in adult mice subjected to a chronic oral administration of HoP- or HHP-DM. METHODS: Mice were treated by daily gavages with HoP- or HHP-DM over seven days. Intestinal barrier integrity was assessed through in vivo 4 kDa FITC-dextran permeability assay and mRNA expression of several tight junctions and mucins in ileum and colon. Cecal short chain fatty acids (SCFAs) and microbiota were analyzed. RESULTS: HHP-DM mice displayed decreased intestinal permeability to FITC-dextran and increased ileal mRNA expression levels of two tight junctions (Ocln and Cdh1) and Muc2. In the colon, mRNA expression levels of two tight junctions (Cdh1 and Tjp1) and of two mucins (Muc2 and Muc4) were decreased in HHP-DM mice. Cecal SCFAs and microbiota were not different between groups. CONCLUSIONS: HHP processing of DM reinforces intestinal barrier integrity in vivo without affecting gut microbiota and SCFAs production. This study reinforces previous findings showing that DM sterilization through HHP might be beneficial for the intestinal maturation of preterm infants compared with the use of HoP for the treatment of DM.


Asunto(s)
Pasteurización , Recién Nacido , Adulto , Lactante , Humanos , Animales , Ratones , Leche Humana , Presión Hidrostática , Recien Nacido Prematuro , Esterilización , ARN Mensajero
6.
Ann Cardiol Angeiol (Paris) ; 72(5): 101640, 2023 Nov.
Artículo en Francés | MEDLINE | ID: mdl-37677914

RESUMEN

Recent international guidelines recommend rapid initiation and titration of basic treatments of heart failure but do not explain how to achieve this goal. Despite these recommendations, implementation of treatment in daily practice is poor. This may be partly explained by the profile of the patients (frailty, comorbidities), safety considerations and tolerability issues related to kydney function, low blood pressure or heart rate and hyperkalaemia. In this special article, we intended to help the physician, through an algorithmic approach, to quickly and safely introduce guideline-directed medical therapy in the field of heart failure with ejection fraction under 50%.

7.
Viruses ; 15(7)2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37515257

RESUMEN

In preterm infants, sterilized donor milk (DM) is frequently used for feeding when breast milk is lacking. Most human milk banks use the Holder pasteurization method (HoP) to ensure the microbiological safety of DM. However, this method degrades many bioactive factors and hormones. Recently, high hydrostatic pressure (HHP) processing, which preserves bioactive factors in human milk, has been proposed as an alternative method to ensure the safety of DM. Although HHP treatment has been shown to be effective for viral inactivation, the effect of HHP on viruses that may be present in the complex nutritional matrix of human milk has not yet been defined. In the present study, we compared the efficacy of two HHP protocols (4 cycles at 350 MPa at 38 °C designated as 4xHP350 treatment, and 1 cycle at 600 MPa at 20 °C designated as 1xHP600 treatment) with the HoP method on artificially virus-infected DM. For this purpose, we used human coronavirus 229E (HCoV-229E) and hepatitis E virus (HEV) as surrogate models for enveloped and non-enveloped viruses. Our results showed that HCoV-229E is inactivated by HHP and HoP treatment. In particular, the 4xHP350 protocol is highly effective in inactivating HCoV-229E. However, our results demonstrated a matrix effect of human milk on HCoV-229E inactivation. Furthermore, we demonstrated that HEV is stable to moderate pressure HHP treatment, but the milk matrix does not protect it from inactivation by the high-pressure HHP treatment of 600 MPa. Importantly, the complex nutritional matrix of human milk protects HEV from inactivation by HoP treatment. In conclusion, we demonstrated that HHP and HoP treatments do not lead to complete inactivation of both surrogate virus models, indicating that these treatments cannot guarantee total viral safety of donor milk.


Asunto(s)
Coronavirus Humano 229E , Virus de la Hepatitis E , Lactante , Femenino , Humanos , Recién Nacido , Leche Humana , Pasteurización/métodos , Presión Hidrostática , Recien Nacido Prematuro
8.
Nutrients ; 15(12)2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37375672

RESUMEN

BACKGROUND: An inadequate perinatal nutritional environment can alter the maturation of the intestinal barrier and promote long-term pathologies such as metabolic syndrome or chronic intestinal diseases. The intestinal microbiota seems to play a determining role in the development of the intestinal barrier. In the present study, we investigated the impact of consuming an early postnatal prebiotic fiber (PF) on growth, intestinal morphology and the microbiota at weaning in postnatal-growth-restricted mice (PNGR). METHODS: Large litters (15 pups/mother) were generated from FVB/NRj mice to induce PNGR at postnatal day 4 (PN4) and compared to control litters (CTRL, 8 pups/mother). PF (a resistant dextrin) or water was orally administered once daily to the pups from PN8 to PN20 (3.5 g/kg/day). Intestinal morphology was evaluated at weaning (PN21) using the ileum and colon. Microbial colonization and short-chain fatty acid (SCFA) production were investigated using fecal and cecal contents. RESULTS: At weaning, the PNGR mice showed decreased body weight and ileal crypt depth compared to the CTRL. The PNGR microbiota was associated with decreased proportions of the Lachnospiraceae and Oscillospiraceae families and the presence of the Akkermansia family and Enterococcus genus compared to the CTRL pups. The propionate concentrations were also increased with PNGR. While PF supplementation did not impact intestinal morphology in the PNGR pups, the proportions of the Bacteroides and Parabacteroides genera were enriched, but the proportion of the Proteobacteria phylum was reduced. In the CTRL pups, the Akkermansia genus (Verrucomicrobiota phylum) was present in the PF-supplemented CTRL pups compared to the water-supplemented ones. CONCLUSIONS: PNGR alters intestinal crypt maturation in the ileum at weaning and gut microbiota colonization. Our data support the notion that PF supplementation might improve gut microbiota establishment during the early postnatal period.


Asunto(s)
Suplementos Dietéticos , Prebióticos , Femenino , Embarazo , Animales , Ratones , Intestinos , Lactancia , Ratones Endogámicos
9.
Front Nutr ; 10: 1107054, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36891163

RESUMEN

The milk metabolome is composed of hundreds of molecules that can impact infant development. In preterm infants, sterilized donor milk (DM) is frequently used for their feeding. We aimed to identify differences in the metabolome of DM after two types of milk sterilization: the Holder pasteurization (HoP) and a high hydrostatic pressure (HP) processing. DM samples were sterilized by HoP (62.5°C for 30 min) or processed by HP (350 MPa at 38°C). 595 milk metabolites were analyzed using an untargeted metabolomic analysis. Both treatments differentially altered several classes of compounds. The major changes noted included decreased levels of free fatty acids, phospholipid metabolites, and sphingomyelins. Decreases were more strongly noted in HP samples rather than in HoP ones. Both HoP and HP treatments increased the levels of ceramides and nucleotide compounds. The sterilization of human milk altered its metabolome especially for lipids.

10.
Placenta ; 128: 112-115, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36152345

RESUMEN

The APJ receptor and its two endogenous ligands, apelin and elabela, exert key roles in fetoplacental development. In adult, this system is altered by obesity but no data are available during pregnancy. We measured apelin and elabela levels in maternal plasma and cord blood and quantified placental gene expression of apelin, elabela and APJ in obese and non-obese mothers. We found that obesity reduced apelin level in cord blood without affecting maternal and cord blood elabela levels as well as placental gene expression of this system. Our data suggest that obesity alters fetal apelinemia in humans.


Asunto(s)
Obesidad Materna , Adulto , Apelina/genética , Apelina/metabolismo , Femenino , Sangre Fetal/metabolismo , Humanos , Obesidad/metabolismo , Placenta/metabolismo , Embarazo
11.
Antioxidants (Basel) ; 11(6)2022 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-35739988

RESUMEN

Preterm infants are highly susceptible to oxidative stress due to an imbalance between endogenous oxidant and antioxidant systems. In addition, these newborns are frequently fed with donor milk (DM) treated by Holder pasteurization (HoP) at 62.5 °C for 30 min, which is known to alter numerous heat-sensitive factors, including some antioxidants. High hydrostatic pressure (HHP) processing was recently proposed as an innovative method for the treatment of DM. The present study aimed to measure the redox balance of HoP- and HHP-DM and to study, in vivo, the effects of HoP- and HHP-DM on the gut and liver. H2O2, vitamin A and vitamin E (α- and γ-tocopherols) concentrations, as well as the total antioxidant capacity (TAC), were measured in raw-, HoP- and HHP-DM. The gene expression level of antioxidant systems and inflammatory response were quantified in the ileum and liver of adult mice after 7 days of oral administration of HoP- or HHP-DM. HoP reduced the γ-tocopherol level, whereas HHP treatment preserved all vitamins close to the raw milk level. The milk H2O2 content was reduced by HHP but not by HoP. The total antioxidant capacity of DM was reduced after HHP processing measured by PAOT-Liquid® technology but was unaffected after measurement by ORAC assay. In mice, HHP-DM administration induced a stimulation of antioxidant defenses and reduced some inflammatory markers in both the ileum and liver compared to HoP-DM treatment. Our preliminary study suggests that the HHP processing of DM may better protect preterm infants from gut and liver pathologies compared to HoP, which is currently used in most human milk banks.

12.
Nutrients ; 14(10)2022 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-35631317

RESUMEN

(1) Background: Type 2 diabetes (T2D) is associated with a duodenal hypermotility in postprandial conditions that favors hyperglycemia and insulin resistance via the gut-brain axis. Enterosynes, molecules produced within the gut with effects on the enteric nervous system, have been recently discovered and pointed to as potential key modulators of the glycemia. Indeed, targeting the enteric nervous system that controls gut motility is now considered as an innovative therapeutic way in T2D to limit intestinal glucose absorption and restore the gut-brain axis to improve insulin sensitivity. So far, little is known about the role of glucose on duodenal contraction in fasted and fed states in normal and diabetic conditions. The aim of the present study was thus to investigate these effects in adult mice. (2) Methods: Gene-expression level of glucose transporters (SGLT-1 and GLUT2) were quantified in the duodenum and jejunum of normal and diabetic mice fed with an HFD. The effect of glucose at different concentrations on duodenal and jejunal motility was studied ex vivo using an isotonic sensor in fasted and fed conditions in both normal chow and HFD mice. (3) Results: Both SGLT1 and GLUT2 expressions were increased in the duodenum (47 and 300%, respectively) and jejunum (75% for GLUT2) of T2D mice. We observed that glucose stimulates intestinal motility in fasted (200%) and fed (400%) control mice via GLUT2 by decreasing enteric nitric oxide release (by 600%), a neurotransmitter that inhibits gut contractions. This effect was not observed in diabetic mice, suggesting that glucose sensing and mechanosensing are altered during T2D. (4) Conclusions: Glucose acts as an enterosyne to control intestinal motility and glucose absorption through the enteric nervous system. Our data demonstrate that GLUT2 and a reduction of NO production could both be involved in this stimulatory contracting effect.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Animales , Glucemia/metabolismo , Glucosa/metabolismo , Ratones , Óxido Nítrico/metabolismo
13.
Food Chem ; 377: 131957, 2022 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-34990954

RESUMEN

In human milk banks (HMBs), donor milk (DM) is commonly sterilized by Holder pasteurization (HoP). High hydrostatic pressure (HHP) processing is an innovative, alternative method for DM sterilization. We evaluated the impact of HHP processing on the concentration of seven metabolic milk hormones. Eight samples of raw DM were aliquoted. One aliquot was sterilized by HoP (62 °C for 30 min), and another was processed by HHP (350 MPa at 38 °C). Compared with raw DM, HoP milk displayed reduced concentrations of insulin, nesfatin-1, cortisol, leptin, apelin and GLP-1, though adiponectin levels were unchanged. HHP processing maintained the levels of insulin, nesfatin-1, cortisol and leptin at their initial levels in raw DM, reduced apelin and adiponectin levels, but increased GLP-1 level. Sterilization of DM by HHP thus preserves the main metabolic hormones in human milk, underlining the interest of this method for use in HMBs.


Asunto(s)
Bancos de Leche Humana , Leche Humana , Femenino , Humanos , Presión Hidrostática , Insulina , Pasteurización
14.
Nutrients ; 14(1)2022 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-35011094

RESUMEN

BACKGROUND: High hydrostatic pressure (HHP) processing is a non-thermal method proposed as an alternative to Holder pasteurization (HoP) for the sterilization of human breast milk (BM). HHP preserves numerous milk bioactive factors that are degraded by HoP, but no data are available for milk apelin and glucagon-like peptide 1 (GLP-1), two hormones implicated in the control of glucose metabolism directly and via the gut-brain axis. This study aims to determine the effects of HoP and HHP processing on apelin and GLP-1 concentrations in BM and to test the effect of oral treatments with HoP- and HHP-BM on intestinal contractions and glucose metabolism in adult mice. METHODS: Mice were treated by daily oral gavages with HoP- or HHP-BM during one week before intestinal contractions, and glucose tolerance was assessed. mRNA expression of enteric neuronal enzymes known to control intestinal contraction was measured. RESULTS: HoP-BM displayed a reduced concentration of apelin and GLP-1, whereas HHP processing preserved these hormones close to their initial levels in raw milk. Chronic HHP-BM administration to mice increased ileal mRNA nNos expression level leading to a decrease in gut contraction associated with improved glucose tolerance. CONCLUSION: In comparison to HoP, HPP processing of BM preserves both apelin and GLP-1 and improves glucose tolerance by acting on gut contractions. This study reinforces previous findings demonstrating that HHP processing provides BM with a higher biological value than BM treated by HoP.


Asunto(s)
Apelina/análisis , Péptido 1 Similar al Glucagón/análisis , Glucosa/metabolismo , Presión Hidrostática , Leche Humana/química , Animales , Eje Cerebro-Intestino/fisiología , Humanos , Ileus/metabolismo , Ratones , Pasteurización
15.
Clin Nutr ; 41(1): 1-8, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34861623

RESUMEN

BACKGROUND & AIMS: High hydrostatic pressure (HHP) processing is a non-thermal method proposed as an alternative to Holder pasteurization (HoP) for the treatment of human milk. HHP preserves numerous milk bioactive components that are degraded by HoP, but no data are available for milk oligosaccharides (HMOs) or the formation of Maillard reaction products, which may be deleterious for preterm newborns. METHODS: We evaluated the impact of HHP processing of human milk on 22 HMOs measured by liquid chromatography with fluorescence detection and on furosine, lactuloselysine, carboxymethyllysine (CML) and carboxyethyllysine (CEL) measured by liquid chromatography with tandem mass spectrometric detection (LC-MS/MS), four established indicators of the Maillard reaction. Human raw milk was sterilized by HoP (62.5 °C for 30 min) or processed by HHP (350 MPa at 38 °C). RESULTS: Neither HHP nor HoP processing affected the concentration of HMOs, but HoP significantly increased furosine, lactuloselysine, CML and CEL levels in milk. CONCLUSIONS: Our findings demonstrate that HPP treatment preserves HMOs and avoids formation of Maillard reaction products. Our study confirms and extends previous findings that HHP treatment of human milk provides safe milk, with fewer detrimental effects on the biochemically active milk components than HoP.


Asunto(s)
Manipulación de Alimentos/métodos , Productos Finales de Glicación Avanzada/síntesis química , Presión Hidrostática , Leche Humana/química , Oligosacáridos/química , Cromatografía Liquida , Humanos , Espectrometría de Masas en Tándem
16.
Int J Obes (Lond) ; 45(5): 1052-1060, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33594258

RESUMEN

OBJECTIVE: Recent evidence indicates that levels of breast milk (BM) hormones such as leptin can fluctuate with maternal adiposity, suggesting that BM hormones may signal maternal metabolic and nutritional environments to offspring during postnatal development. The hormone apelin is highly abundant in BM but its regulation during lactation is completely unknown. Here, we evaluated whether maternal obesity and overnutrition impacted BM apelin and leptin levels in clinical cohorts and lactating rats. METHODS: BM and plasma samples were collected from normal-weight and obese breastfeeding women, and from lactating rats fed a control or a high fat (HF) diet during lactation. Apelin and leptin levels were assayed by ELISA. Mammary gland (MG) apelin expression and its cellular localization in lactating rats was measured by quantitative RT-PCR and immunofluorescence, respectively. RESULTS: BM apelin levels increased with maternal BMI, whereas plasma apelin levels decreased. BM apelin was also positively correlated with maternal insulin and C-peptide levels. In rats, maternal HF feeding exclusively during lactation was sufficient to increase BM apelin levels and decrease its plasma concentration without changing body weight. In contrast, BM leptin levels increased with maternal BMI in humans, but did not change with maternal HF feeding during lactation in rats. Apelin is highly expressed in the rat MG during lactation and was mainly localized to mammary myoepithelial cells. We found that MG apelin gene expression was up-regulated by maternal HF diet and positively correlated with BM apelin content and maternal insulinemia. CONCLUSIONS: Our study indicates that BM apelin levels increase with long- and short-term overnutrition, possibly via maternal hyperinsulinemia and transcriptional upregulation of MG apelin expression in myoepithelial cells. Apelin regulates many physiological processes, including energy metabolism, digestive function, and development. Further studies are needed to unravel the consequences of such changes in offspring development.


Asunto(s)
Apelina/análisis , Leche Humana/química , Obesidad Materna/epidemiología , Obesidad Materna/fisiopatología , Hipernutrición/fisiopatología , Animales , Lactancia Materna , Dieta Alta en Grasa , Femenino , Francia , Humanos , Lactancia , Leptina , Fenómenos Fisiologicos Nutricionales Maternos , Embarazo , Ratas , Ratas Wistar
17.
Front Nutr ; 8: 769773, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35127780

RESUMEN

Several studies have demonstrated that high protein diets improve glucose homeostasis. Nevertheless, the mechanisms underlying this effect remain elusive. This exploratory study aims to screen and compare the acute effects of dietary proteins from different sources on intestinal glucose absorption. Six dietary proteins from various sources were thus selected and digested thanks to the INFOGEST static gastrointestinal digestion protocol. The digested proteins were able to decrease intestinal glucose absorption in vitro and ex vivo. Moreover, acute ingestion of casein and fish gelatin led to improved glucose tolerance in Wistar rats without significant effect on insulin secretion. In parallel, GLUT2 mRNA expression in enterocytes was decreased following short-term incubation with some of the digested proteins. These results strengthen the evidence that digested protein-derived peptides and amino acids are key regulators of glucose homeostasis and highlight their role in intestinal glucose absorption.

18.
Gut ; 70(6): 1078-1087, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33020209

RESUMEN

OBJECTIVE: The enteric nervous system (ENS) plays a key role in controlling the gut-brain axis under normal and pathological conditions, such as type 2 diabetes. The discovery of intestinal actors, such as enterosynes, able to modulate the ENS-induced duodenal contraction is considered an innovative approach. Among all the intestinal factors, the understanding of the role of gut microbes in controlling glycaemia is still developed. We studied whether the modulation of gut microbiota by prebiotics could permit the identification of novel enterosynes. DESIGN: We measured the effects of prebiotics on the production of bioactive lipids in the intestine and tested the identified lipid on ENS-induced contraction and glucose metabolism. Then, we studied the signalling pathways involved and compared the results obtained in mice to human. RESULTS: We found that modulating the gut microbiota with prebiotics modifies the actions of enteric neurons, thereby controlling duodenal contraction and subsequently attenuating hyperglycaemia in diabetic mice. We discovered that the signalling pathway involved in these effects depends on the synthesis of a bioactive lipid 12-hydroxyeicosatetraenoic acid (12-HETE) and the presence of mu-opioid receptors (MOR) on enteric neurons. Using pharmacological approaches, we demonstrated the key role of the MOR receptors and proliferator-activated receptor γ for the effects of 12-HETE. These findings are supported by human data showing a decreased expression of the proenkephalin and MOR messanger RNAs in the duodenum of patients with diabetic. CONCLUSIONS: Using a prebiotic approach, we identified enkephalin and 12-HETE as new enterosynes with potential real beneficial and safety impact in diabetic human.


Asunto(s)
Ácido 12-Hidroxi-5,8,10,14-Eicosatetraenoico/biosíntesis , Glucemia/metabolismo , Diabetes Mellitus Tipo 2/fisiopatología , Duodeno/fisiología , Sistema Nervioso Entérico/fisiología , Prebióticos , Receptores Opioides mu/metabolismo , Ácido 12-Hidroxi-5,8,10,14-Eicosatetraenoico/farmacología , Adulto , Anciano , Animales , Eje Cerebro-Intestino , Diabetes Mellitus Experimental/fisiopatología , Duodeno/inervación , Encefalinas/genética , Encefalinas/metabolismo , Sistema Nervioso Entérico/efectos de los fármacos , Microbioma Gastrointestinal , Prueba de Tolerancia a la Glucosa , Humanos , Contracción Isotónica/efectos de los fármacos , Masculino , Ratones , Persona de Mediana Edad , Músculo Liso/fisiología , Neuronas/fisiología , Óxido Nítrico Sintasa de Tipo I/genética , Óxido Nítrico Sintasa de Tipo I/metabolismo , Oligosacáridos/farmacología , PPAR gamma/metabolismo , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , ARN Mensajero/metabolismo , Receptores Opioides mu/genética , Transducción de Señal
19.
IEEE Trans Ultrason Ferroelectr Freq Control ; 67(12): 2750-2756, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32924939

RESUMEN

A 1-GHz full cryogenic oscillator is presented. The oscillator is based on a planar superconductor resonator featuring a loaded Q factor of 200 000 at low microwave input power (unloaded Q of 400 000) and on amplifying parts realized with SiGe bipolar transistors. The circuit is designed with a harmonic balance software and realized on an alumina substrate. A nonlinear model is extracted at low temperature both for the transistor and the resonator. This double nonlinearity increases the difficulty of the oscillator design and implies a strategy to limit the power inside the resonator. The vibrations of the cryogenerator are also a serious issue to get high performance. Finally, the oscillator features a phase noise of -112 dBc/Hz at 100-Hz offset frequency and a phase noise floor of -170 dBc/Hz (100-kHz offset) at a temperature of 65 K.

20.
Nutrients ; 11(12)2019 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-31817318

RESUMEN

Despite constant research and public policy efforts, the obesity epidemic continues to be a major public health threat, and new approaches are urgently needed. It has been shown that nutrient imbalance in early life, from conception to infancy, influences later obesity risk, suggesting that obesity could result from "developmental programming". In this review, we evaluate the possibility that early postnatal nutrition programs obesity risk via epigenetic mechanisms, especially DNA methylation, focusing on four main topics: (1) the dynamics of epigenetic processes in key metabolic organs during the early postnatal period; (2) the epigenetic effects of alterations in early postnatal nutrition in animal models or breastfeeding in humans; (3) current limitations and remaining outstanding questions in the field of epigenetic programming; (4) candidate pathways by which early postnatal nutrition could epigenetically program adult body weight set point. A particular focus will be given to the potential roles of breast milk fatty acids, neonatal metabolic and hormonal milieu, and gut microbiota. Understanding the mechanisms by which early postnatal nutrition can promote lifelong metabolic modifications is essential to design adequate recommendations and interventions to "de-program" the obesity epidemic.


Asunto(s)
Epigénesis Genética/genética , Fenómenos Fisiológicos Nutricionales del Lactante/genética , Obesidad Infantil/genética , Animales , Animales Recién Nacidos , Lactancia Materna , Reprogramación Celular/genética , Desarrollo Infantil , Metilación de ADN/genética , Metabolismo Energético/genética , Femenino , Estudios de Seguimiento , Humanos , Lactante , Recién Nacido , Masculino , Fenómenos Fisiologicos Nutricionales Maternos , Obesidad/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA