Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Anal Chem ; 96(26): 10551-10558, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38888386

RESUMEN

Drying oils such as linseed oil form a polymer network through a complex free-radical polymerization process. We have studied polymerization in this challenging class of polymers using a quartz crystal microbalance (QCM). The QCM is able to measure the evolution of polymer mass and mechanical properties as the oil transitions from a liquid-like to a solid-like state. Measurements using bulk materials and thin films provide information about the initial polymerization phase as well as the evolution of the mass and mechanical properties over the first two years of cure. The temperature-dependent response of the cured linseed oil films was also measured. These results were combined with previously published results obtained from traditional dynamic mechanical analysis to give a unified picture of the properties of these materials across a very broad temperature range.

2.
J Colloid Interface Sci ; 633: 566-574, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36470137

RESUMEN

From the 15th century onwards, painters began to treat their oils with lead compounds before grinding them with pigments. Such a treatment induces the partial hydrolysis of the oil triglycerides and the formation of lead soaps, which significantly modify the rheological properties of the oil paint. Organization at the supramolecular scale is thus expected to explain these macroscopic changes. Synchrotron Rheo-SAXS (Small Angle X-ray Scattering) measurements were carried out on lead-treated oils, with different lead contents. We can now propose a full picture of the relationship between structure and rheological properties of historical saponified oils. At rest, lead soaps in oil are organized as lamellar phases with a characteristic period of 50 Å. Under shear, the loss of viscoelastic properties can be linked to the modification of this organization. Continuous shear resulted in a preferential and reversible orientation of the lamellar domains which increased with the concentration of lead soaps. The parallel orientation predominates over the entire shear range (0-1000 s-1). Conversely, oscillatory shear coiled the lamellae into cylinders that oriented themselves vertically in the rheometer cell. This is the first report of such a vertical cylindrical structure obtained under shear from lamellae.


Asunto(s)
Aceites , Jabones , Difracción de Rayos X , Dispersión del Ángulo Pequeño
3.
Soft Matter ; 17(6): 1589-1600, 2021 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-33350997

RESUMEN

The process of colloidal drying gives way to particle self-assembly in numerous fields including photonics or biotechnology. Yet, the mechanisms and conditions driving the final particle arrangement in dry colloidal layers remain elusive. Here, we examine how the drying rate selects the nanostructure of thick dried layers in four different suspensions of silica nanospheres. Depending on particle size and dispersity, either an amorphous arrangement, a crystalline arrangement, or a rate-dependent amorphous-to-crystalline transition occurs at the drying surface. Amorphous arrangements are observed in the two most polydisperse suspensions while crystallinity occurs when dispersity is lower. Counter-intuitively in the latter case, a higher drying rate favors ordering of the particles. To complement these measurements and to take stock of the bulk properties of the layer, tests on the layer porosity were undertaken. For all suspensions studied herein, faster drying yields denser dry layers. Crystalline surface arrangement implies large bulk volume fraction (∼0.65) whereas amorphous arrangements can be observed in layers with either low (down to ∼0.53) or high (∼0.65) volume fraction. Lastly, we demonstrate via targeted additional experiments and SAXS measurements, that the packing structure of the layers is mainly driven by the formation of aggregates and their subsequent packing, and not by the competition between Brownian diffusion and convection. This highlights that a second dimensionless ratio in addition to the Peclet number should be taken into account, namely the aggregation over evaporation timescale.

4.
Soft Matter ; 14(19): 3987-3997, 2018 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-29737329

RESUMEN

Layers obtained by drying a colloidal dispersion of silica spheres are found to be a good benchmark to test the elastic behaviour of porous media, in the challenging case of high porosities and nano-sized microstructures. Classically used for these systems, Kendall's approach explicitly considers the effect of surface adhesive forces onto the contact area between the particles. This approach provides the Young's modulus using a single adjustable parameter (the adhesion energy) but provides no further information on the tensorial nature and possible anisotropy of elasticity. On the other hand, homogenization approaches (e.g. rule of mixtures, and Eshelby, Mori-Tanaka and self-consistent schemes), based on continuum mechanics and asymptotic analysis, provide the stiffness tensor from the knowledge of the porosity and the elastic constants of the beads. Herein, the self-consistent scheme accurately predicts both bulk and shear moduli, with no adjustable parameter, provided the porosity is less than 35%, for layers composed of particles as small as 15 nm in diameter. Conversely, Kendall's approach is found to predict the Young's modulus over the full porosity range. Moreover, the adhesion energy in Kendall's model has to be adjusted to a value of the order of the fracture energy of the particle material. This suggests that sintering during drying leads to the formation of covalent siloxane bonds between the particles.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...