Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biol Cell ; 99(1): 55-65, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17155935

RESUMEN

An increasing number of genes are being identified for which the corresponding mRNAs contain different combinations of the encoded exons. This highly regulated exon choice, or alternative splicing, is often tissue-specific and potentially could differentially affect cellular functions. Alternative splicing is therefore not only a means to increase the coding capacity of the genome, but also to regulate gene expression during differentiation or development. To both evaluate the importance for cellular functions and define the regulatory pathways of alternative splicing, it is necessary to progress from the in vitro or ex vivo experimental models actually used towards in vivo whole-animal studies. We present here the amphibian, Xenopus, as an experimental model highly amenable for such studies. The various experimental approaches that can be used with Xenopus oocytes and embryos to characterize regulatory sequence elements and factors are presented and the advantages and drawbacks of these approaches are discussed. Finally, the real possibilities for large-scale identification of mRNAs containing alternatively spliced exons, the tissue-specific patterns of exon usage and the way in which these patterns are modified by perturbing the relative amount of splicing factors are discussed.


Asunto(s)
Empalme Alternativo/genética , Modelos Genéticos , Xenopus/genética , Animales , Embrión no Mamífero/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos/genética , Transactivadores/metabolismo , Xenopus/embriología
2.
Biol Cell ; 98(11): 653-65, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16836486

RESUMEN

BACKGROUND INFORMATION: mRNA deadenylation [shortening of the poly(A) tail] is often triggered by specific sequence elements present within mRNA 3' untranslated regions and generally causes rapid degradation of the mRNA. In vertebrates, many of these deadenylation elements are called AREs (AU-rich elements). The EDEN (embryo deadenylation element) sequence is a Xenopus class III ARE. EDEN acts by binding a specific factor, EDEN-BP (EDEN-binding protein), which in turn stimulates deadenylation. RESULTS: We show here that EDEN-BP is able to oligomerize. A 27-amino-acid region of EDEN-BP was identified as a key domain for oligomerization. A mutant of EDEN-BP lacking this region was unable to oligomerize, and a peptide corresponding to this region competitively inhibited the oligomerization of full-length EDEN-BP. Impairing oligomerization by either of these two methods specifically abolished EDEN-dependent deadenylation. Furthermore, impairing oligomerization inhibited the binding of EDEN-BP to its target RNA, demonstrating a strong coupling between EDEN-BP oligomerization and RNA binding. CONCLUSIONS: These data, showing that the oligomerization of EDEN-BP is required for binding of the protein on its target RNA and for EDEN-dependent deadenylation in Xenopus embryos, will be important for the identification of cofactors required for the deadenylation process.


Asunto(s)
Adenosina Monofosfato/metabolismo , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Xenopus/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Sitios de Unión/fisiología , Embrión no Mamífero , Femenino , Datos de Secuencia Molecular , Polímeros/metabolismo , Unión Proteica/fisiología , Estructura Terciaria de Proteína/fisiología , Señales de Poliadenilación de ARN 3'/fisiología , ARN Mensajero/genética , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética , Proteínas de Xenopus/biosíntesis , Proteínas de Xenopus/química , Proteínas de Xenopus/genética , Xenopus laevis
3.
Mol Cell Biol ; 25(21): 9595-607, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16227608

RESUMEN

The polypyrimidine tract binding protein (PTB) has been described as a global repressor of regulated exons. To investigate PTB functions in a physiological context, we used a combination of morpholino-mediated knockdown and transgenic overexpression strategies in Xenopus laevis embryos. We show that embryonic endoderm and skin deficient in PTB displayed a switch of the alpha-tropomyosin pre-mRNA 3' end processing to the somite-specific pattern that results from the utilization of an upstream 3'-terminal exon designed exon 9A9'. Conversely, somitic targeted overexpression of PTB resulted in the repression of the somite-specific exon 9A9' and a switch towards the nonmuscle pattern. These results validate PTB as a key physiological regulator of the 3' end processing of the alpha-tropomyosin pre-mRNA. Moreover, using a minigene strategy in the Xenopus oocyte, we show that in addition to repressing the splicing of exon 9A9', PTB regulates the cleavage/polyadenylation of this 3'-terminal exon.


Asunto(s)
Proteína de Unión al Tracto de Polipirimidina/fisiología , Procesamiento de Término de ARN 3' , Tropomiosina/genética , Actinina/genética , Animales , Animales Modificados Genéticamente , Tipificación del Cuerpo , Diferenciación Celular , Embrión no Mamífero , Endodermo/metabolismo , Exones , Poliadenilación , Proteína de Unión al Tracto de Polipirimidina/biosíntesis , Proteína de Unión al Tracto de Polipirimidina/genética , Isoformas de Proteínas/genética , Precursores del ARN/metabolismo , Empalme del ARN , Piel/metabolismo , Somitos/citología , Somitos/metabolismo , Xenopus laevis
4.
Rouxs Arch Dev Biol ; 198(7): 420-429, 1990 May.
Artículo en Inglés | MEDLINE | ID: mdl-28305537

RESUMEN

In urodele amphibians, the lack of a reliable germ cell marker restricts the experimental study of the germ lineage. In the present work, we conducted genetic and histological analyses in order to demonstrate that melanin from oocytes constitutes a germ cell marker available for intraspecific experiments in Ambystoma mexicanum. Then, using this marker, we implanted germ cells from undifferentiated gonads (stage 48) into the blastocoel of host embryos and investigated their fate and determined state. Our results show that, from this stage on, the donor cells do not differentiate into other cell types; therefore, they are restricted in developmental capacity and irreversibly determined as germ cells. On the other hand, exogenous germ cells were found in an isotopic position until the young tail-bud stage, and then were found in an ectopic position; these results suggest that, from the middle tail-bud stage on, an active process contributes to migration of primordial germ cells to the gonadal territory.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...