Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Ultrasound Med Biol ; 43(1): 206-217, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27743727

RESUMEN

The identification of a sub-endocardial infarction is of major interest in cardiology. This study evaluates the sensitivity of selected measures to the thickness of such an infarction. Synthetic ultrasonic data (long-axis view) of left ventricular models with inclusions were generated using Field II and meshes obtained from finite-element simulations, which also provided the reference for the estimates obtained from ultrasonic data. The displacements, the first and second component of the principal strain (ε1 and ε2), and several measures derived from these quantities were estimated. All estimates, except for the poorly estimated ε2, exhibited sensitivity to the presence and transmurality of the inclusion. The most sensitive was the gradient of the averaged transmural profiles of ε1, and ε1 averaged over the area corresponding to the transmural inclusion. The inflection point of the ε1 profile shifted toward the outer wall with increasing thickness of the non-transmural inclusion.


Asunto(s)
Simulación por Computador , Ecocardiografía/métodos , Ventrículos Cardíacos/diagnóstico por imagen , Ventrículos Cardíacos/fisiopatología , Modelos Biológicos , Infarto del Miocardio/diagnóstico por imagen , Infarto del Miocardio/fisiopatología
2.
Artículo en Inglés | MEDLINE | ID: mdl-22547278

RESUMEN

Automatic quantification of regional left ventricular deformation in volumetric ultrasound data remains challenging. Many methods have been proposed to extract myocardial motion, including techniques using block matching, phase-based correlation, differential optical flow methods, and image registration. Our lab previously presented an approach based on elastic registration of subsequent volumes using a B-spline representation of the underlying transformation field. Encouraging results were obtained for the assessment of global left ventricular function, but a thorough validation on a regional level was still lacking. For this purpose, univentricular thick-walled cardiac phantoms were deformed in an experimental setup to locally assess strain accuracy against sonomicrometry as a reference method and to assess whether regions containing stiff inclusions could be detected. Our method showed good correlations against sonomicrometry: r(2) was 0.96, 0.92, and 0.84 for the radial (ε(RR)), longitudinal (ε(LL)), and circumferential (ε(CC)) strain, respectively. Absolute strain errors and strain drift were low for ε(LL) (absolute mean error: 2.42%, drift: -1.05%) and ε(CC) (error: 1.79%, drift: -1.33%) and slightly higher for ε(RR) (error: 3.37%, drift: 3.05%). The discriminative power of our methodology was adequate to resolve full transmural inclusions down to 17 mm in diameter, although the inclusion-to-surrounding tissue stiffness ratio was required to be at least 5:2 (absolute difference of 39.42 kPa). When the inclusion-to-surrounding tissue stiffness ratio was lowered to approximately 2:1 (absolute difference of 22.63 kPa), only larger inclusions down to 27 mm in diameter could still be identified. Radial strain was found not to be reliable in identifying dysfunctional regions.


Asunto(s)
Ecocardiografía Tridimensional/instrumentación , Ecocardiografía Tridimensional/métodos , Corazón/fisiología , Procesamiento de Imagen Asistido por Computador/métodos , Fantasmas de Imagen , Humanos , Modelos Biológicos , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...