Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Development ; 151(6)2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38391249

RESUMEN

Lactation is an essential process for mammals. In sheep, the R96C mutation in suppressor of cytokine signaling 2 (SOCS2) protein is associated with greater milk production and increased mastitis sensitivity. To shed light on the involvement of R96C mutation in mammary gland development and lactation, we developed a mouse model carrying this mutation (SOCS2KI/KI). Mammary glands from virgin adult SOCS2KI/KI mice presented a branching defect and less epithelial tissue, which were not compensated for in later stages of mammary development. Mammary epithelial cell (MEC) subpopulations were modified, with mutated mice having three times as many basal cells, accompanied by a decrease in luminal cells. The SOCS2KI/KI mammary gland remained functional; however, MECs contained more lipid droplets versus fat globules, and milk lipid composition was modified. Moreover, the gene expression dynamic from virgin to pregnancy state resulted in the identification of about 3000 differentially expressed genes specific to SOCS2KI/KI or control mice. Our results show that SOCS2 is important for mammary gland development and milk production. In the long term, this finding raises the possibility of ensuring adequate milk production without compromising animal health and welfare.


Asunto(s)
Lactancia , Glándulas Mamarias Animales , Animales , Femenino , Ratones , Embarazo , Células Epiteliales/metabolismo , Lactancia/genética , Glándulas Mamarias Animales/metabolismo , Leche/metabolismo , Mutación/genética
2.
J Cell Sci ; 135(6)2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35048992

RESUMEN

During the first cell cycles of early development, the chromatin of the embryo is highly reprogrammed while the embryonic genome starts its own transcription. The spatial organization of the genome is an important process that contributes to regulating gene transcription in time and space. It has, however, been poorly studied in the context of early embryos. To study the cause-and-effect link between transcription and spatial organization in embryos, we focused on ribosomal genes, which are silent initially but start to be transcribed in 2-cell mouse embryos. We demonstrated that ribosomal sequences and early unprocessed rRNAs are spatially organized in a very particular manner between 2-cell and 16-cell stage. By using drugs that interfere with ribosomal DNA transcription, we showed that this organization - which is totally different in somatic cells - depends on an active transcription of ribosomal genes and induces a unique chromatin environment that favors transcription of major satellite sequences once the 4-cell stage has been reached.


Asunto(s)
Cromatina , ARN Ribosómico , Animales , Cromatina/genética , Cromatina/metabolismo , ADN Ribosómico/genética , Embrión de Mamíferos/metabolismo , Ratones , ARN Ribosómico/genética , ARN Ribosómico/metabolismo , Ribosomas/metabolismo , Transcripción Genética
3.
BMC Cancer ; 21(1): 461, 2021 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-33902518

RESUMEN

BACKGROUND: Pressurized Intra-Peritoneal Aerosol Chemotherapy (PIPAC) is an innovative treatment against peritoneal carcinomatosis. Doxorubicin is a common intra-venous chemotherapy used for peritoneal carcinomatosis and for PIPAC. This study evaluated the impact of increased PIPAC intraperitoneal pressure on the distribution and cell penetration of doxorubicin in a sheep model. METHODS: Doxorubicin was aerosolized using PIPAC into the peritoneal cavity of 6 ewes (pre-alpes breed): N = 3 with 12 mmHg intraperitoneal pressure ("group 12") and N = 3 with 20 mmHg ("group 20"). Samples from peritoneum (N = 6), ovarian (N = 1), omentum (N = 1) and caecum (N = 1) were collected for each ewe. The number of doxorubicin positive cells was determined using the ratio between doxorubicine fluorescence-positive cell nuclei (DOXO+) over total number of DAPI positive cell nuclei (DAPI+). Penetration depth (µm) was defined as the distance between the luminal surface and the location of the deepest DOXO+ nuclei over the total number of cell nuclei that were stained with DAPI. Penetration depth (µm) was defined as the distance between the luminal surface and the location of the deepest DOXO+ nuclei. RESULTS: DOXO+ nuclei were identified in 87% of samples. All omental samples, directly localized in front of the nebulizer head, had 100% DOXO+ nuclei whereas very few nuclei were DOXO+ for caecum. Distribution patterns were not different between the two groups but penetration depth in ovary and caecum samples was significantly deeper in group 20. CONCLUSIONS: This study showed that applying a higher intra-peritoneal pressure during PIPAC treatment leads to a deeper penetration of doxorubicin in ovarian and caecum but does not affect distribution patterns.


Asunto(s)
Antibióticos Antineoplásicos/farmacocinética , Doxorrubicina/farmacocinética , Sistemas de Liberación de Medicamentos/métodos , Neoplasias Peritoneales/metabolismo , Aerosoles , Animales , Antibióticos Antineoplásicos/administración & dosificación , Antibióticos Antineoplásicos/análisis , Ciego/química , Ciego/metabolismo , Núcleo Celular/química , Doxorrubicina/administración & dosificación , Doxorrubicina/análisis , Femenino , Epiplón/química , Epiplón/metabolismo , Ovario/química , Ovario/metabolismo , Neoplasias Peritoneales/tratamiento farmacológico , Peritoneo/química , Peritoneo/metabolismo , Presión , Ovinos , Distribución Tisular
4.
Int J Mol Sci ; 21(19)2020 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-33003470

RESUMEN

Skeletal muscle has a remarkable plasticity, and its phenotype is strongly influenced by hormones, transcription factors, and physical activity. However, whether skeletal phenotype can be oriented or not during early embryonic stages has never been investigated. Here, we report that pyruvate as the only source of carbohydrate in the culture medium of mouse one cell stage embryo influenced the establishment of the muscular phenotype in adulthood. We found that pyruvate alone induced changes in the contractile phenotype of the skeletal muscle in a sexually dependent manner. For male mice, a switch to a more glycolytic phenotype was recorded, whereas, in females, the pyruvate induced a switch to a more oxidative phenotype. In addition, the influence of pyruvate on the contractile phenotypes was confirmed in two mouse models of muscle hypertrophy: the well-known myostatin deficient mouse (Mstn-/-) and a mouse carrying a specific deletion of p43, a mitochondrial triiodothyronine receptor. Finally, to understand the link between these adult phenotypes and the early embryonic period, we assessed the levels of two histone H3 post-translational modifications in presence of pyruvate alone just after the wave of chromatin reprogramming specific of the first cell cycle. We showed that H3K4 acetylation level was decreased in Mstn-/- 2-cell embryos, whereas no difference was found for H3K27 trimethylation level, whatever the genotype. These findings demonstrate for the first time that changes in the access of energy substrate during the very first embryonic stage can induce a precocious orientation of skeletal muscle phenotype in adulthood.


Asunto(s)
Citocinas/genética , Hipertrofia/genética , Músculo Esquelético/metabolismo , Miostatina/genética , Acetilación , Animales , Metabolismo de los Hidratos de Carbono/genética , Modelos Animales de Enfermedad , Embrión de Mamíferos , Desarrollo Embrionario/genética , Femenino , Genotipo , Glucólisis/genética , Hipertrofia/metabolismo , Hipertrofia/patología , Masculino , Ratones , Mitocondrias/metabolismo , Contracción Muscular/genética , Músculo Esquelético/patología , Oxidación-Reducción , Fenotipo , Ácido Pirúvico/metabolismo
5.
Biochem Biophys Res Commun ; 516(1): 258-263, 2019 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-31230751

RESUMEN

DNAJC2 protein, also known as ZRF1 or MPP11, acts both as chaperone and as chromatin regulator. It is involved in stem cell differentiation and its expression is associated with various cancer malignancies. However, the role of Dnajc2 gene during mouse embryogenesis has not been assessed so far. To this aim, we invalidated Dnajc2 gene in FVB/Nj mice using the CrispR/Cas9 approach. We showed that this invalidation leads to the early post-implantation lethality of the nullizygous embryos. Furthermore, using siRNAs against Dnajc2 in mouse 1-cell embryos, we showed that maternal Dnajc2 mRNAs may allow for the early preimplantation development of these embryos. Altogether, these data demonstrate for the first time the requirement of DNAJC2 for early mouse embryogenesis.


Asunto(s)
Proteínas de Unión al ADN/genética , Embrión de Mamíferos/embriología , Regulación del Desarrollo de la Expresión Génica , Ratones/embriología , Chaperonas Moleculares/genética , Proteínas de Unión al ARN/genética , Animales , Sistemas CRISPR-Cas , Implantación del Embrión , Pérdida del Embrión/genética , Embrión de Mamíferos/metabolismo , Desarrollo Embrionario , Femenino , Eliminación de Gen , Ratones/genética , Embarazo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...