Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 11(2)2019 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-30960248

RESUMEN

Here, we report a facile and effective one-pot approach to prepare uniform amylose-based polymeric microparticles (PMPs) through enzymatic synthesis of short-chain amylose (SCA) followed by spontaneous self-assembly of the SCA in the presence of lecithin. The effect of lecithin on nucleation and growth kinetics of amylose microparticles was investigated by monitoring the turbidity of reaction solution and the size of particles over the course of the self-assembly process. The results suggest that lecithin played a critical role in controlling the self-assembly kinetics to form uniform amylose microparticles through steric stabilization of the growing particles and diffusion-limited growth effect. The crystallinity of amylose microparticles was not affected by lecithin, implying that lecithin did not disrupt the crystal structure within the particle and would mainly be present on the surface of the microparticles. Considering its biodegradable and biocompatible nature, the amylose-based microparticles would find a range of useful applications in the area of food, cosmetics, medicine, chromatography and other related materials sciences.

2.
Biotechnol Prog ; 33(6): 1640-1646, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28653475

RESUMEN

The ß-carotene embedded amylose microparticles (BC-AmMPs) were prepared in one-step by utilizing the unique catalytic activity of amylosucrase from Deinococcus geothermalis (DgAS), which synthesizes linear amylose chains using sucrose as the sole substrate. Synthesized amylose chains self-assembled with ß-carotene to form well-defined spherical microparticles with an encapsulation yield of 65%. The BC-AmMPs produced (average diameter ∼8 µm) were bright orange due to the embedded ß-carotene, and this was confirmed by Raman analysis. XRD showed BC-AmMPs had a B-type amylose crystal structure with a degree of crystallinity lower than that of AmMPs. This lower crystallinity of AmMP after BC encapsulation was confirmed by DSC analysis. Decreased enthalpy of gelatinization (ΔHgel ) of BC-AmMP implied that molecular order within the amylose microstructure was influenced by the presence of BC. The stability of BC against environmental stresses, such as UV light and oxidative stress, was significantly enhanced by its encapsulation. The authors propose a new approach to the preparation of an amylose based carrier system for active compounds or expensive food ingredients with poor stabilities during storage or processing. Given that amylose is a safe food material, the devised encapsulation system will find wide range of practical applications in the food industry. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1640-1646, 2017.


Asunto(s)
Amilosa/química , Industria de Alimentos , Glucosiltransferasas/química , beta Caroteno/química , Catálisis , Cristalografía por Rayos X , Deinococcus/enzimología , Estabilidad de Enzimas , Conformación Proteica , Sacarosa/química , Termodinámica , Difracción de Rayos X
3.
Carbohydr Polym ; 151: 606-613, 2016 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-27474606

RESUMEN

Amylose microparticles can be produced by self-assembly of amylose molecules through an amylosucrase-mediated synthesis. Here we investigated the role of short-chain fatty acids in the formation of amylose microparticles and the fate of these fatty acids at the end of the reaction. The rate of self-assembly and production yields of amylose microparticles were significantly enhanced in the presence of fatty acids. The effect was dependent on the length of the fatty acid carbon tail; butanoic acid (C4) was the most effective, followed by hexanoic acid (C6) and octanoic acid (C8). The amylose microparticles were investigated by carrying out SEM, XRD, Raman, NMR, FT-IR and DSC analysis. The size, morphology and crystal structure of the resulting amylose microparticles were comparable with those of amylose microparticles produced without fatty acids. The results indicated the carboxyl group of the fatty acid to be responsible for promoting the self-assembly of amylose chains to form microparticles. The fatty acids were eventually removed from the microstructure through the tight association of amylose double helices to form the amylose microparticles.


Asunto(s)
Amilosa/química , Ácidos Grasos Volátiles/química , Glucosiltransferasas/metabolismo , Microesferas , Deinococcus/enzimología , Modelos Moleculares , Conformación Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...