Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Development ; 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38828852

RESUMEN

The cellular and genetic networks which contribute to the development of the zeugopod, (radius and ulna of the forearm, tibia and fibula of the leg) are not well understood, although these bones are susceptible to loss in congenital human syndromes and to the action of teratogens such as thalidomide. Using a new fate mapping approach with the Chameleon transgenic chicken line, we show that there is a small contribution of SHH expressing cells to the posterior ulna, posterior carpals and digit 3. We establish that while the majority of the ulna develops in response to paracrine SHH signaling in both the chicken and mouse, there are differences in the contribution of SHH expressing cells between mouse and chicken as well as between the chicken ulna and fibula. This is evidence that although zeugopod bones are clearly homologous according to the fossil record, the gene regulatory networks which contribute to their development and evolution are not fixed.

2.
Nat Struct Mol Biol ; 29(9): 891-897, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36097291

RESUMEN

The regulatory landscapes of developmental genes in mammals can be complex, with enhancers spread over many hundreds of kilobases. It has been suggested that three-dimensional genome organization, particularly topologically associating domains formed by cohesin-mediated loop extrusion, is important for enhancers to act over such large genomic distances. By coupling acute protein degradation with synthetic activation by targeted transcription factor recruitment, here we show that cohesin, but not CTCF, is required for activation of the target gene Shh by distant enhancers in mouse embryonic stem cells. Cohesin is not required for activation directly at the promoter or by an enhancer located closer to the Shh gene. Our findings support the hypothesis that chromatin compaction via cohesin-mediated loop extrusion allows for genes to be activated by enhancers that are located many hundreds of kilobases away in the linear genome and suggests that cohesin is dispensable for enhancers located more proximally.


Asunto(s)
Proteínas de Ciclo Celular , Proteínas Cromosómicas no Histona , Animales , Factor de Unión a CCCTC/genética , Factor de Unión a CCCTC/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cromatina/genética , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Elementos de Facilitación Genéticos/genética , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Mamíferos/genética , Ratones , Factores de Transcripción/metabolismo , Cohesinas
3.
Front Cell Dev Biol ; 9: 595744, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33869166

RESUMEN

Enhancers that are conserved deep in evolutionary time regulate characteristics held in common across taxonomic classes. Here, deletion of the highly conserved Shh enhancer SBE2 (Shh brain enhancer 2) in mouse markedly reduced Shh expression within the embryonic brain specifically in the rostral diencephalon; however, no abnormal anatomical phenotype was observed. Secondary enhancer activity was subsequently identified which likely mediates low levels of expression. In contrast, when crossing the SBE2 deletion with the Shh null allele, brain and craniofacial development were disrupted; thus, linking SBE2 regulated Shh expression to multiple defects and further enabling the study of the effects of differing levels of Shh on embryogenesis. Development of the hypothalamus, derived from the rostral diencephalon, was disrupted along both the anterior-posterior (AP) and the dorsal-ventral (DV) axes. Expression of DV patterning genes and subsequent neuronal population induction were particularly sensitive to Shh expression levels, demonstrating a novel morphogenic context for Shh. The role of SBE2, which is highlighted by DV gene expression, is to step-up expression of Shh above the minimal activity of the second enhancer, ensuring the necessary levels of Shh in a regional-specific manner. We also show that low Shh levels in the diencephalon disrupted neighbouring craniofacial development, including mediolateral patterning of the bones along the cranial floor and viscerocranium. Thus, SBE2 contributes to hypothalamic morphogenesis and ensures there is coordination with the formation of the adjacent midline cranial bones that subsequently protect the neural tissue.

4.
Nat Commun ; 12(1): 2282, 2021 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-33863876

RESUMEN

Acheiropodia, congenital limb truncation, is associated with homozygous deletions in the LMBR1 gene around ZRS, an enhancer regulating SHH during limb development. How these deletions lead to this phenotype is unknown. Using whole-genome sequencing, we fine-mapped the acheiropodia-associated region to 12 kb and show that it does not function as an enhancer. CTCF and RAD21 ChIP-seq together with 4C-seq and DNA FISH identify three CTCF sites within the acheiropodia-deleted region that mediate the interaction between the ZRS and the SHH promoter. This interaction is substituted with other CTCF sites centromeric to the ZRS in the disease state. Mouse knockouts of the orthologous 12 kb sequence have no apparent abnormalities, showcasing the challenges in modelling CTCF alterations in animal models due to inherent motif differences between species. Our results show that alterations in CTCF motifs can lead to a Mendelian condition due to altered enhancer-promoter interactions.


Asunto(s)
Factor de Unión a CCCTC/genética , Extremidades/embriología , Deformidades Congénitas del Pie/genética , Regulación del Desarrollo de la Expresión Génica , Deformidades Congénitas de la Mano/genética , Animales , Sitios de Unión/genética , Secuenciación de Inmunoprecipitación de Cromatina , Modelos Animales de Enfermedad , Embrión de Mamíferos , Elementos de Facilitación Genéticos/genética , Exones/genética , Femenino , Sitios Genéticos , Pruebas Genéticas , Proteínas Hedgehog/genética , Humanos , Intrones/genética , Masculino , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Regiones Promotoras Genéticas/genética , Eliminación de Secuencia , Especificidad de la Especie , Secuenciación Completa del Genoma
5.
Development ; 146(19)2019 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-31511252

RESUMEN

Topologically associating domains (TADs) have been proposed to both guide and constrain enhancer activity. Shh is located within a TAD known to contain all its enhancers. To investigate the importance of chromatin conformation and TAD integrity on developmental gene regulation, we have manipulated the Shh TAD - creating internal deletions, deleting CTCF sites, and deleting and inverting sequences at TAD boundaries. Chromosome conformation capture and fluorescence in situ hybridisation assays were used to investigate the changes in chromatin conformation that result from these manipulations. Our data suggest that these substantial alterations in TAD structure have no readily detectable effect on Shh expression patterns or levels of Shh expression during development - except where enhancers are deleted - and result in no detectable phenotypes. Only in the case of a larger deletion at one TAD boundary could ectopic influence of the Shh limb enhancer be detected on a gene (Mnx1) in the neighbouring TAD. Our data suggests that, contrary to expectations, the developmental regulation of Shh expression is remarkably robust to TAD perturbations.


Asunto(s)
Elementos de Facilitación Genéticos/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas Hedgehog/genética , Animales , Emparejamiento Base/genética , Factor de Unión a CCCTC , Cromatina/metabolismo , Embrión de Mamíferos/metabolismo , Extremidades/embriología , Genoma , Proteínas Hedgehog/metabolismo , Ratones , Especificidad de Órganos/genética , Fenotipo , Eliminación de Secuencia/genética
6.
Cell Rep ; 20(6): 1396-1408, 2017 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-28793263

RESUMEN

Expression of sonic hedgehog (Shh) in the limb bud is regulated by an enhancer called the zone of polarizing activity regulatory sequence (ZRS), which, in evolution, belongs to an ancient group of highly conserved cis regulators found in all classes of vertebrates. Here, we examined the endogenous ZRS in mice, using genome editing to establish the relationship between enhancer composition and embryonic phenotype. We show that enhancer activity is a consolidation of distinct activity domains. Spatial restriction of Shh expression is mediated by a discrete repressor module, whereas levels of gene expression are controlled by large overlapping domains containing varying numbers of HOXD binding sites. The number of HOXD binding sites regulates expression levels incrementally. Substantial portions of conserved sequence are dispensable, indicating the presence of sequence redundancy. We propose a collective model for enhancer activity in which function is an integration of discrete expression activities and redundant components that drive robust expression.


Asunto(s)
Secuencia Conservada , Elementos de Facilitación Genéticos , Extremidades/embriología , Regulación del Desarrollo de la Expresión Génica , Proteínas Hedgehog/genética , Animales , Sitios de Unión , Proteínas Hedgehog/química , Proteínas Hedgehog/metabolismo , Ratones , Fenotipo , Unión Proteica
7.
Open Biol ; 6(11)2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27852806

RESUMEN

The expression of genes with key roles in development is under very tight spatial and temporal control, mediated by enhancers. A classic example of this is the sonic hedgehog gene (Shh), which plays a pivotal role in the proliferation, differentiation and survival of neural progenitor cells both in vivo and in vitro. Shh expression in the brain is tightly controlled by several known enhancers that have been identified through genetic, genomic and functional assays. Using chromatin profiling during the differentiation of embryonic stem cells to neural progenitor cells, here we report the identification of a novel long-range enhancer for Shh-Shh-brain-enhancer-6 (SBE6)-that is located 100 kb upstream of Shh and that is required for the proper induction of Shh expression during this differentiation programme. This element is capable of driving expression in the vertebrate brain. Our study illustrates how a chromatin-focused approach, coupled to in vivo testing, can be used to identify new cell-type specific cis-regulatory elements, and points to yet further complexity in the control of Shh expression during embryonic brain development.


Asunto(s)
Encéfalo/embriología , Elementos de Facilitación Genéticos , Perfilación de la Expresión Génica/métodos , Proteínas Hedgehog/genética , Células Madre Embrionarias Humanas/citología , Animales , Diferenciación Celular , Cromatina/genética , Regulación del Desarrollo de la Expresión Génica , Humanos , Ratones , Transducción de Señal
8.
Development ; 143(16): 2994-3001, 2016 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-27402708

RESUMEN

Limb-specific Shh expression is regulated by the (∼1 Mb distant) ZRS enhancer. In the mouse, limb bud-restricted spatiotemporal Shh expression occurs from ∼E10 to E11.5 at the distal posterior margin and is essential for correct autopod formation. Here, we have analysed the higher-order chromatin conformation of Shh in expressing and non-expressing tissues, both by fluorescence in situ hybridisation (FISH) and by chromosome conformation capture (5C). Conventional and super-resolution light microscopy identified significantly elevated frequencies of Shh/ZRS colocalisation only in the Shh-expressing regions of the limb bud, in a conformation consistent with enhancer-promoter loop formation. However, in all tissues and at all developmental stages analysed, Shh-ZRS spatial distances were still consistently shorter than those to a neural enhancer located between Shh and ZRS in the genome. 5C identified a topologically associating domain (TAD) over the Shh/ZRS genomic region and enriched interactions between Shh and ZRS throughout E11.5 embryos. Shh/ZRS colocalisation, therefore, correlates with the spatiotemporal domain of limb bud-specific Shh expression, but close Shh and ZRS proximity in the nucleus occurs regardless of whether the gene or enhancer is active. We suggest that this constrained chromatin configuration optimises the opportunity for the active enhancer to locate and instigate the expression of Shh.


Asunto(s)
Elementos de Facilitación Genéticos/genética , Proteínas Hedgehog/metabolismo , Animales , Cromosomas/genética , Cromosomas/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas Hedgehog/genética , Hibridación Fluorescente in Situ , Esbozos de los Miembros/metabolismo , Ratones
9.
PLoS One ; 11(6): e0157079, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27299863

RESUMEN

Hedgehog (Hh) signalling is a potent regulator of cell fate and function. While much is known about the events within a Hh-stimulated cell, far less is known about the regulation of Hh-ligand production. Drosophila Hyperplastic Discs (Hyd), a ubiquitin-protein ligase, represents one of the few non-transcription factors that independently regulates both hh mRNA expression and pathway activity. Using a murine embryonic stem cell system, we revealed that shRNAi of the mammalian homologue of hyd, Ubr5, effectively prevented retinoic-acid-induced Sonic hedgehog (Shh) expression. We next investigated the UBR5:Hh signalling relationship in vivo by generating and validating a mouse bearing a conditional Ubr5 loss-of-function allele. Conditionally deleting Ubr5 in the early embryonic limb-bud mesenchyme resulted in a transient decrease in Indian hedgehog ligand expression and decreased Hh pathway activity, around E13.5. Although Ubr5-deficient limbs and digits were, on average, shorter than control limbs, the effects were not statistically significant. Hence, while loss of UBR5 perturbed Hedgehog signalling in the developing limb, there were no obvious morphological defects. In summary, we report the first conditional Ubr5 mutant mouse and provide evidence for a role for UBR5 in influencing Hh signalling, but are uncertain to whether the effects on Hedgehog signaling were direct (cell autonomous) or indirect (non-cell-autonomous). Elaboration of the cellular/molecular mechanism(s) involved may help our understanding on diseases and developmental disorders associated with aberrant Hh signalling.


Asunto(s)
Extremidades/embriología , Eliminación de Gen , Proteínas Hedgehog/metabolismo , Mutación , Transducción de Señal , Ubiquitina-Proteína Ligasas/genética , Alelos , Animales , Línea Celular , Extremidades/fisiología , Regulación del Desarrollo de la Expresión Génica , Proteínas Hedgehog/genética , Esbozos de los Miembros/anomalías , Esbozos de los Miembros/embriología , Esbozos de los Miembros/metabolismo , Deformidades Congénitas de las Extremidades/genética , Deformidades Congénitas de las Extremidades/metabolismo , Ratones , Células Madre Embrionarias de Ratones/citología , Células Madre Embrionarias de Ratones/metabolismo , Fenotipo , Tretinoina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
10.
EMBO J ; 35(8): 831-44, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-26903602

RESUMEN

Aicardi-Goutières syndrome (AGS) provides a monogenic model of nucleic acid-mediated inflammation relevant to the pathogenesis of systemic autoimmunity. Mutations that impair ribonuclease (RNase) H2 enzyme function are the most frequent cause of this autoinflammatory disorder of childhood and are also associated with systemic lupus erythematosus. Reduced processing of eitherRNA:DNAhybrid or genome-embedded ribonucleotide substrates is thought to lead to activation of a yet undefined nucleic acid-sensing pathway. Here, we establishRnaseh2b(A174T/A174T)knock-in mice as a subclinical model of disease, identifying significant interferon-stimulated gene (ISG) transcript upregulation that recapitulates theISGsignature seen inAGSpatients. The inflammatory response is dependent on the nucleic acid sensor cyclicGMP-AMPsynthase (cGAS) and its adaptorSTINGand is associated with reduced cellular ribonucleotide excision repair activity and increasedDNAdamage. This suggests thatcGAS/STINGis a key nucleic acid-sensing pathway relevant toAGS, providing additional insight into disease pathogenesis relevant to the development of therapeutics for this childhood-onset interferonopathy and adult systemic autoimmune disorders.


Asunto(s)
Enfermedades Autoinmunes del Sistema Nervioso/genética , Inmunidad Innata/genética , Proteínas de la Membrana/inmunología , Mutación Missense , Malformaciones del Sistema Nervioso/genética , Nucleotidiltransferasas/inmunología , Ribonucleasa H/genética , Ribonucleasas/genética , Animales , Enfermedades Autoinmunes del Sistema Nervioso/inmunología , Enfermedades Autoinmunes del Sistema Nervioso/metabolismo , Autoinmunidad/genética , Daño del ADN , Regulación de la Expresión Génica , Humanos , Interferones/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones Endogámicos C57BL , Ratones Mutantes , Malformaciones del Sistema Nervioso/inmunología , Malformaciones del Sistema Nervioso/metabolismo , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo , Ribonucleasa H/metabolismo
12.
PLoS Genet ; 11(12): e1005673, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26646717

RESUMEN

Human ß-defensin 3 (hBD3) is a cationic host defence peptide and is part of the innate immune response. HBD3 is present on a highly copy number variable block of six ß-defensin genes, and increased copy number is associated with the autoimmune disease psoriasis. It is not known how this increase influences disease development, but psoriasis is a T cell-mediated disease and activation of the innate immune system is required for the initial trigger that leads to the amplification stage. We investigated the effect of hBD3 on the response of primary macrophages to various TLR agonists. HBD3 exacerbated the production of type I Interferon-ß in response to the viral ligand mimic polyinosinic:polycytidylic acid (polyI:C) in both human and mouse primary cells, although production of the chemokine CXCL10 was suppressed. Compared to polyI:C alone, mice injected with both hBD3 peptide and polyI:C also showed an enhanced increase in Interferon-ß. Mice expressing a transgene encoding hBD3 had elevated basal levels of Interferon-ß, and challenge with polyI:C further increased this response. HBD3 peptide increased uptake of polyI:C by macrophages, however the cellular response and localisation of polyI:C in cells treated contemporaneously with hBD3 or cationic liposome differed. Immunohistochemistry showed that hBD3 and polyI:C do not co-localise, but in the presence of hBD3 less polyI:C localises to the early endosome. Using bone marrow derived macrophages from knockout mice we demonstrate that hBD3 suppresses the polyI:C-induced TLR3 response mediated by TICAM1 (TRIF), while exacerbating the cytoplasmic response through MDA5 (IFIH1) and MAVS (IPS1/CARDIF). Thus, hBD3, a highly copy number variable gene in human, influences cellular responses to the viral mimic polyI:C implying that copy number may have a significant phenotypic effect on the response to viral infection and development of autoimmunity in humans.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras del Transporte Vesicular/genética , ARN Helicasas DEAD-box/genética , Psoriasis/genética , Receptor Toll-Like 3/genética , beta-Defensinas/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Animales , Médula Ósea , Quimiocina CXCL10/genética , ARN Helicasas DEAD-box/metabolismo , Humanos , Inmunidad Innata/genética , Helicasa Inducida por Interferón IFIH1 , Liposomas/metabolismo , Macrófagos/metabolismo , Macrófagos/patología , Ratones , Ratones Noqueados , Poli I-C/administración & dosificación , Psoriasis/patología , Receptor Toll-Like 3/antagonistas & inhibidores , beta-Defensinas/metabolismo
13.
Development ; 141(20): 3934-43, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25252942

RESUMEN

Coordinated gene expression controlled by long-distance enhancers is orchestrated by DNA regulatory sequences involving transcription factors and layers of control mechanisms. The Shh gene and well-established regulators are an example of genomic composition in which enhancers reside in a large desert extending into neighbouring genes to control the spatiotemporal pattern of expression. Exploiting the local hopping activity of the Sleeping Beauty transposon, the lacZ reporter gene was dispersed throughout the Shh region to systematically map the genomic features responsible for expression activity. We found that enhancer activities are retained inside a genomic region that corresponds to the topological associated domain (TAD) defined by Hi-C. This domain of approximately 900 kb is in an open conformation over its length and is generally susceptible to all Shh enhancers. Similar to the distal enhancers, an enhancer residing within the Shh second intron activates the reporter gene located at distances of hundreds of kilobases away, suggesting that both proximal and distal enhancers have the capacity to survey the Shh topological domain to recognise potential promoters. The widely expressed Rnf32 gene lying within the Shh domain evades enhancer activities by a process that may be common among other housekeeping genes that reside in large regulatory domains. Finally, the boundaries of the Shh TAD do not represent the absolute expression limits of enhancer activity, as expression activity is lost stepwise at a number of genomic positions at the verges of these domains.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Proteínas Hedgehog/fisiología , Animales , Blastocisto/citología , Elementos Transponibles de ADN , Elementos de Facilitación Genéticos , Perfilación de la Expresión Génica , Genes Reporteros , Prueba de Complementación Genética , Proteínas Hedgehog/genética , Heterocigoto , Intrones , Ratones , Ratones Transgénicos , Modelos Genéticos , Regiones Promotoras Genéticas , Estructura Terciaria de Proteína , Transgenes
14.
Development ; 141(8): 1715-25, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24715461

RESUMEN

Conservation within intergenic DNA often highlights regulatory elements that control gene expression from a long range. How conservation within a single element relates to regulatory information and how internal composition relates to function is unknown. Here, we examine the structural features of the highly conserved ZRS (also called MFCS1) cis-regulator responsible for the spatiotemporal control of Shh in the limb bud. By systematically dissecting the ZRS, both in transgenic assays and within in the endogenous locus, we show that the ZRS is, in effect, composed of two distinct domains of activity: one domain directs spatiotemporal activity but functions predominantly from a short range, whereas a second domain is required to promote long-range activity. We show further that these two domains encode activities that are highly integrated and that the second domain is crucial in promoting the chromosomal conformational changes correlated with gene activity. During limb bud development, these activities encoded by the ZRS are interpreted differently by the fore limbs and the hind limbs; in the absence of the second domain there is no Shh activity in the fore limb, and in the hind limb low levels of Shh lead to a variant digit pattern ranging from two to four digits. Hence, in the embryo, the second domain stabilises the developmental programme providing a buffer for SHH morphogen activity and this ensures that five digits form in both sets of limbs.


Asunto(s)
Esbozos de los Miembros/embriología , Esbozos de los Miembros/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos/genética , Animales , Secuencia de Bases , Cromosomas de los Mamíferos/química , Análisis Mutacional de ADN , Embrión de Mamíferos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Miembro Posterior/embriología , Miembro Posterior/metabolismo , Hibridación Fluorescente in Situ , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Conformación de Ácido Nucleico , Fenotipo , Mutación Puntual/genética , Eliminación de Secuencia/genética
15.
PLoS Genet ; 9(10): e1003826, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24204287

RESUMEN

ß-defensin peptides are a family of antimicrobial peptides present at mucosal surfaces, with the main site of expression under normal conditions in the male reproductive tract. Although they kill microbes in vitro and interact with immune cells, the precise role of these genes in vivo remains uncertain. We show here that homozygous deletion of a cluster of nine ß-defensin genes (DefbΔ9) in the mouse results in male sterility. The sperm derived from the mutants have reduced motility and increased fragility. Epididymal sperm isolated from the cauda should require capacitation to induce the acrosome reaction but sperm from the mutants demonstrate precocious capacitation and increased spontaneous acrosome reaction compared to wild-types but have reduced ability to bind the zona pellucida of oocytes. Ultrastructural examination reveals a defect in microtubule structure of the axoneme with increased disintegration in mutant derived sperm present in the epididymis cauda region, but not in caput region or testes. Consistent with premature acrosome reaction, sperm from mutant animals have significantly increased intracellular calcium content. Thus we demonstrate in vivo that ß-defensins are essential for successful sperm maturation, and their disruption leads to alteration in intracellular calcium, inappropriate spontaneous acrosome reaction and profound male infertility.


Asunto(s)
Deleción Cromosómica , Infertilidad Masculina/genética , Espermatozoides/metabolismo , beta-Defensinas/genética , Animales , Cromosomas/genética , Cromosomas/metabolismo , Infertilidad Masculina/patología , Masculino , Ratones , Maduración del Esperma/genética , Espermatozoides/patología
16.
Hum Mol Genet ; 22(25): 5083-95, 2013 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-23900076

RESUMEN

The embryonic epicardium is an important source of cardiovascular precursor cells and paracrine factors that are required for adequate heart formation. Signaling pathways regulated by WT1 that promote heart development have started to be described; however, there is little information on signaling pathways regulated by WT1 that could act in a negative manner. Transcriptome analysis of Wt1KO epicardial cells reveals an unexpected role for WT1 in repressing the expression of interferon-regulated genes that could be involved in a negative regulation of heart morphogenesis. Here, we showed that WT1 is required to repress the expression of the chemokines Ccl5 and Cxcl10 in epicardial cells. We observed an inverse correlation of Wt1 and the expression of Cxcl10 and Ccl5 during epicardium development. Chemokine receptor analyses of hearts from Wt1(gfp/+) mice demonstrate the differential expression of their chemokine receptors in GFP(+) epicardial enriched cells and GFP(-) cells. Functional assays demonstrate that CXCL10 and CCL5 inhibit epicardial cells migration and the proliferation of cardiomyocytes respectively. WT1 regulates the expression levels of Cxcl10 and Ccl5 in epicardial cells directly and indirectly through increasing the levels of IRF7. As epicardial cell reactivation after a myocardial damage is linked with WT1 expression, the present work has potential implications in adult heart repair.


Asunto(s)
Quimiocina CCL5/biosíntesis , Quimiocina CXCL10/biosíntesis , Corazón/crecimiento & desarrollo , Pericardio/crecimiento & desarrollo , Proteínas WT1/genética , Animales , Quimiocina CCL5/genética , Quimiocina CXCL10/genética , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Técnicas de Inactivación de Genes , Factor 7 Regulador del Interferón/metabolismo , Ratones , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Pericardio/citología , Receptores de Quimiocina/antagonistas & inhibidores , Receptores de Quimiocina/metabolismo , Transducción de Señal , Proteínas WT1/biosíntesis
17.
Philos Trans R Soc Lond B Biol Sci ; 368(1620): 20120357, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23650631

RESUMEN

Multi-species conserved non-coding elements occur in the vertebrate genome and are clustered in the vicinity of developmentally regulated genes. Many are known to act as cis-regulators of transcription and may reside at long distances from the genes they regulate. However, the relationship of conserved sequence to encoded regulatory information and indeed, the mechanism by which these contribute to long-range transcriptional regulation is not well understood. The ZRS, a highly conserved cis-regulator, is a paradigm for such long-range gene regulation. The ZRS acts over approximately 1 Mb to control spatio-temporal expression of Shh in the limb bud and mutations within it result in a number of limb abnormalities, including polydactyly, tibial hypoplasia and syndactyly. We describe the activity of this developmental regulator and discuss a number of mechanisms by which regulatory mutations in this enhancer function to cause congenital abnormalities.


Asunto(s)
Anomalías Congénitas/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas Hedgehog/metabolismo , Animales , Sitios de Unión , Anomalías Congénitas/metabolismo , Secuencia Conservada , Elementos de Facilitación Genéticos , Evolución Molecular , Proteínas Hedgehog/genética , Humanos , Deformidades Congénitas de las Extremidades/genética , Mutación , Transcripción Genética
18.
Development ; 139(17): 3157-67, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22872084

RESUMEN

A late phase of HoxD activation is crucial for the patterning and growth of distal structures across the anterior-posterior (A-P) limb axis of mammals. Polycomb complexes and chromatin compaction have been shown to regulate Hox loci along the main body axis in embryonic development, but the extent to which they have a role in limb-specific HoxD expression, an evolutionary adaptation defined by the activity of distal enhancer elements that drive expression of 5' Hoxd genes, has yet to be fully elucidated. We reveal two levels of chromatin topology that differentiate distal limb A-P HoxD activity. Using both immortalised cell lines derived from posterior and anterior regions of distal E10.5 mouse limb buds, and analysis in E10.5 dissected limb buds themselves, we show that there is a loss of polycomb-catalysed H3K27me3 histone modification and a chromatin decompaction over HoxD in the distal posterior limb compared with anterior. Moreover, we show that the global control region (GCR) long-range enhancer spatially colocalises with the 5' HoxD genomic region specifically in the distal posterior limb. This is consistent with the formation of a chromatin loop between 5' HoxD and the GCR regulatory module at the time and place of distal limb bud development when the GCR participates in initiating Hoxd gene quantitative collinearity and Hoxd13 expression. This is the first example of A-P differences in chromatin compaction and chromatin looping in the development of the mammalian secondary body axis (limb).


Asunto(s)
Tipificación del Cuerpo/fisiología , Ensamble y Desensamble de Cromatina/fisiología , Extremidades/embriología , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas de Homeodominio/metabolismo , Factores de Transcripción/metabolismo , Animales , Western Blotting , Línea Celular , Inmunoprecipitación de Cromatina , Cartilla de ADN/genética , Regulación del Desarrollo de la Expresión Génica/genética , Histonas/metabolismo , Procesamiento de Imagen Asistido por Computador , Hibridación Fluorescente in Situ , Ratones , Microscopía Fluorescente , Proteínas del Grupo Polycomb , Reacción en Cadena en Tiempo Real de la Polimerasa , Proteínas Represoras/metabolismo
19.
Cell ; 149(5): 1008-22, 2012 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-22579044

RESUMEN

The presence of ribonucleotides in genomic DNA is undesirable given their increased susceptibility to hydrolysis. Ribonuclease (RNase) H enzymes that recognize and process such embedded ribonucleotides are present in all domains of life. However, in unicellular organisms such as budding yeast, they are not required for viability or even efficient cellular proliferation, while in humans, RNase H2 hypomorphic mutations cause the neuroinflammatory disorder Aicardi-Goutières syndrome. Here, we report that RNase H2 is an essential enzyme in mice, required for embryonic growth from gastrulation onward. RNase H2 null embryos accumulate large numbers of single (or di-) ribonucleotides embedded in their genomic DNA (>1,000,000 per cell), resulting in genome instability and a p53-dependent DNA-damage response. Our findings establish RNase H2 as a key mammalian genome surveillance enzyme required for ribonucleotide removal and demonstrate that ribonucleotides are the most commonly occurring endogenous nucleotide base lesion in replicating cells.


Asunto(s)
Replicación del ADN , Embrión de Mamíferos/metabolismo , Ribonucleasa H/genética , Ribonucleasa H/metabolismo , Ribonucleótidos/metabolismo , Animales , Inestabilidad Cromosómica , ADN Polimerasa Dirigida por ADN/metabolismo , Células Madre Embrionarias/metabolismo , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
20.
Trends Genet ; 28(8): 364-73, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22534646

RESUMEN

Human hands and feet contain bones of a particular size and shape arranged in a precise pattern. The secreted factor sonic hedgehog (SHH) acts through the conserved hedgehog (Hh) signaling pathway to regulate the digital pattern in the limbs of tetrapods (i.e. land-based vertebrates). Genetic analysis is now uncovering a remarkable set of pathogenetic mutations that alter the Hh pathway, thus compromising both digit number and identity. Several of these are regulatory mutations that have the surprising attribute of misdirecting expression of Hh ligands to ectopic sites in the developing limb buds. In addition, other mutations affect a fundamental structural property of the embryonic cell that is essential to Hh signaling. In this review, we focus on the role that the Hh pathway plays in limb development, and how the many human genetic defects in this pathway are providing clues to the mechanisms that regulate limb development.


Asunto(s)
Extremidades , Deformidades Congénitas de las Extremidades/metabolismo , Transducción de Señal , Animales , Tipificación del Cuerpo , Regulación del Desarrollo de la Expresión Génica , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Humanos , Deformidades Congénitas de las Extremidades/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA