Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(7)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38612536

RESUMEN

The endometrial epithelium and underlying stroma undergo profound changes to support and limit embryo adhesion and invasion, which occur in the secretory phase of the menstrual cycle during the window of implantation. This coincides with a peak in progesterone and estradiol production. We hypothesized that the interplay between hormone-induced changes in the mechanical properties of the endometrial epithelium and stroma supports this process. To study it, we used hormone-responsive endometrial adenocarcinoma-derived Ishikawa cells growing on substrates of different stiffness. We showed that Ishikawa monolayers on soft substrates are more tightly clustered and uniform than on stiff substrates. Probing for mechanical alterations, we found accelerated stress-relaxation after apical nanoindentation in hormone-stimulated monolayers on stiff substrates. Traction force microscopy furthermore revealed an increased number of foci with high traction in the presence of estradiol and progesterone on soft substrates. The detection of single cells and small cell clusters positive for the intermediate filament protein vimentin and the progesterone receptor further underscored monolayer heterogeneity. Finally, adhesion assays with trophoblast-derived AC-1M-88 spheroids were used to examine the effects of substrate stiffness and steroid hormones on endometrial receptivity. We conclude that the extracellular matrix and hormones act together to determine mechanical properties and, ultimately, embryo implantation.


Asunto(s)
Matriz Extracelular , Progesterona , Femenino , Humanos , Epitelio , Ciclo Menstrual , Estradiol
2.
Curr Opin Cell Biol ; 85: 102270, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37918274

RESUMEN

Cytoplasmic intermediate filaments endow cells with mechanical stability. They are subject to changes in morphology and composition if needed. This remodeling encompasses entire cells but can also be restricted to specific intracellular regions. Intermediate filaments thereby support spatially and temporally defined cell type-specific functions. This review focuses on recent advances in our understanding of how intermediate filament dynamics affect the underlying regulatory pathways. We will elaborate on the role of intermediate filaments for the formation and maintenance of surface specializations, cell migration, contractility, organelle positioning, nucleus protection, stress responses and axonal conduction velocity. Together, the selected examples highlight the modulatory role of intermediate filament plasticity for multiple cellular functions.


Asunto(s)
Proteínas de Filamentos Intermediarios , Filamentos Intermedios , Filamentos Intermedios/metabolismo , Movimiento Celular , Proteínas de Filamentos Intermediarios/metabolismo
3.
Curr Opin Cell Biol ; 85: 102236, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37708744

RESUMEN

We suggest that the human body can be viewed as of textile nature whose fabric consists of interconnected fiber systems. These fiber systems form highly dynamic scaffolds, which respond to environmental changes at different temporal and spatial scales. This is especially relevant at sites where epithelia border on connective tissue regions that are exposed to dynamic microenvironments. We propose that the enormous heterogeneity and adaptability of epithelia are based on a "keratin code", which results from the cell-specific expression and posttranslational modification of keratin isotypes. It thereby defines unique cytoskeletal intermediate filament networks that are coupled across cells and to the correspondingly heterogeneous fibers of the underlying extracellular matrix. The resulting fabric confers unique local properties.


Asunto(s)
Citoesqueleto , Queratinas , Humanos , Queratinas/metabolismo , Citoesqueleto/metabolismo , Epitelio/metabolismo , Filamentos Intermedios/metabolismo , Textiles
4.
Cells ; 12(17)2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37681854

RESUMEN

Desmosomes play a vital role in providing structural integrity to tissues that experience significant mechanical tension, including the heart. Deficiencies in desmosomal proteins lead to the development of arrhythmogenic cardiomyopathy (AC). The limited availability of preventative measures in clinical settings underscores the pressing need to gain a comprehensive understanding of desmosomal proteins not only in cardiomyocytes but also in non-myocyte residents of the heart, as they actively contribute to the progression of cardiomyopathy. This review focuses specifically on the impact of desmosome deficiency on epi- and endocardial cells. We highlight the intricate cross-talk between desmosomal proteins mutations and signaling pathways involved in the regulation of epicardial cell fate transition. We further emphasize that the consequences of desmosome deficiency differ between the embryonic and adult heart leading to enhanced erythropoiesis during heart development and enhanced fibrogenesis in the mature heart. We suggest that triggering epi-/endocardial cells and fibroblasts that are in different "states" involve the same pathways but lead to different pathological outcomes. Understanding the details of the different responses must be considered when developing interventions and therapeutic strategies.


Asunto(s)
Cardiomiopatías , Desmosomas , Adulto , Humanos , Diferenciación Celular , Epirrubicina , Miocitos Cardíacos
5.
Elife ; 122023 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-37283438

RESUMEN

Intermediate filaments (IFs) are major components of the metazoan cytoskeleton. A long-standing debate concerns the question whether IF network organization only reflects or also determines cell and tissue function. Using Caenorhabditis elegans, we have recently described mutants of the mitogen-activated protein kinase (MAPK) SMA-5 which perturb the organization of the intestinal IF cytoskeleton resulting in luminal widening and cytoplasmic invaginations. Besides these structural phenotypes, systemic dysfunctions were also observed. We now identify the IF polypeptide IFB-2 as a highly efficient suppressor of both the structural and functional deficiencies of mutant sma-5 animals by removing the aberrant IF network. Mechanistically, perturbed IF network morphogenesis is linked to hyperphosphorylation of multiple sites throughout the entire IFB-2 molecule. The rescuing capability is IF isotype-specific and not restricted to sma-5 mutants but extends to mutants that disrupt the function of the cytoskeletal linker IFO-1 and the IF-associated protein BBLN-1. The findings provide strong evidence for adverse consequences of the deranged IF networks with implications for diseases that are characterized by altered IF network organization.


Asunto(s)
Proteínas de Caenorhabditis elegans , Filamentos Intermedios , Animales , Filamentos Intermedios/metabolismo , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Intestinos , Citoesqueleto/metabolismo
6.
Biomater Adv ; 152: 213516, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37348330

RESUMEN

In the lung, pulmonary epithelial cells undergo mechanical stretching during ventilation. The associated cellular mechanoresponse is still poorly understood at the molecular level. Here, we demonstrate that activation of the mechanosensitive cation channel Piezo1 in a human epithelial cell line (H441) and in primary human lung epithelial cells induces the proteolytic activity of the metalloproteinases ADAM10 and ADAM17 at the plasma membrane. These ADAMs are known to convert cell surface expressed proteins into soluble and thereby play major roles in proliferation, barrier regulation and inflammation. We observed that chemical activation of Piezo1 promotes cleavage of substrates that are specific for either ADAM10 or ADAM17. Activation of Piezo1 also induced the synthesis and ADAM10/17-dependent release of the growth factor amphiregulin (AREG). In addition, junctional adhesion molecule A (JAM-A) was shed in an ADAM10/17-dependent manner resulting in a reduction of cell contacts. Stretching experiments combined with Piezo1 knockdown further demonstrated that mechanical activation promotes shedding via Piezo1. Most importantly, high pressure ventilation of murine lungs increased AREG and JAM-A release into the alveolar space, which was reduced by a Piezo1 inhibitor. Our study provides a novel link between stretch-induced Piezo1 activation and the activation of ADAM10 and ADAM17 in lung epithelium. This may help to understand acute respiratory distress syndrome (ARDS) which is induced by ventilation stress and goes along with perturbed epithelial permeability and release of growth factors.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide , Pulmón , Humanos , Ratones , Animales , Secretasas de la Proteína Precursora del Amiloide/genética , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Pulmón/metabolismo , Proteína ADAM10/genética , Proteína ADAM10/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Células Epiteliales/metabolismo , Canales Iónicos/metabolismo , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Metaloproteasas/metabolismo , Proteína ADAM17/genética , Proteína ADAM17/metabolismo
7.
Adv Healthc Mater ; 12(20): e2301030, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37311209

RESUMEN

Recreating human tissues and organs in the petri dish to establish models as tools in biomedical sciences has gained momentum. These models can provide insight into mechanisms of human physiology, disease onset, and progression, and improve drug target validation, as well as the development of new medical therapeutics. Transformative materials play an important role in this evolution, as they can be programmed to direct cell behavior and fate by controlling the activity of bioactive molecules and material properties. Using nature as an inspiration, scientists are creating materials that incorporate specific biological processes observed during human organogenesis and tissue regeneration. This article presents the reader with state-of-the-art developments in the field of in vitro tissue engineering and the challenges related to the design, production, and translation of these transformative materials. Advances regarding (stem) cell sources, expansion, and differentiation, and how novel responsive materials, automated and large-scale fabrication processes, culture conditions, in situ monitoring systems, and computer simulations are required to create functional human tissue models that are relevant and efficient for drug discovery, are described. This paper illustrates how these different technologies need to converge to generate in vitro life-like human tissue models that provide a platform to answer health-based scientific questions.


Asunto(s)
Células Madre , Ingeniería de Tejidos , Humanos , Descubrimiento de Drogas , Sistemas de Liberación de Medicamentos , Materiales Biocompatibles/farmacología
8.
Anat Sci Educ ; 16(5): 814-829, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37183973

RESUMEN

Hands-on courses utilizing preserved human tissues for educational training offer an important pathway to acquire basic anatomical knowledge. Owing to the reevaluation of formaldehyde limits by the European Commission, a joint approach was chosen by the German-speaking anatomies in Europe (Germany, Austria, Switzerland) to find commonalities among embalming protocols and infrastructure. A survey comprising 537 items was circulated to all anatomies in German-speaking Europe. Clusters were established for "ethanol"-, formaldehyde-based ("FA"), and "other" embalming procedures, depending on the chemicals considered the most relevant for each protocol. The logistical framework, volumes of chemicals, and infrastructure were found to be highly diverse between the groups and protocols. Formaldehyde quantities deployed per annum were three-fold higher in the "FA" (223 L/a) compared to the "ethanol" (71.0 L/a) group, but not for "other" (97.8 L/a), though the volumes injected per body were similar. "FA" was strongly related to table-borne air ventilation and total fixative volumes ≤1000 L. "Ethanol" was strongly related to total fixative volumes >1000 L, ceiling- and floor-borne air ventilation, and explosion-proof facilities. Air ventilation was found to be installed symmetrically in the mortuary and dissection facilities. Certain predictors exist for the interplay between the embalming used in a given infrastructure and technical measures. The here-established cluster analysis may serve as decision supportive tool when considering altering embalming protocols or establishing joint protocols between institutions, following a best practice approach to cater toward best-suited tissue characteristics for educational purposes, while simultaneously addressing future demands on exposure limits.


Asunto(s)
Anatomía , Humanos , Fijadores , Anatomía/educación , Embalsamiento/métodos , Cadáver , Formaldehído/química , Etanol
10.
J Chem Neuroanat ; 130: 102259, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36958466

RESUMEN

The distribution of the synaptic vesicle protein synaptoporin was investigated by immunofluorescence in the central auditory system of the mouse brainstem. Synaptoporin immunostaining displayed region-specific differences. High and moderate accumulations of were seen in the superficial layer of the dorsal cochlear nucleus, dorsal and external regions of the inferior colliculus, the medial and dorsal divisions of the medial geniculate body and in periolivary regions of the superior olivary complex (SOC). Low or absent labeling was observed in the more central parts of these structures such as the principal nuclei of the SOC. It was conspicuous that dense synaptoporin immunoreactivity was detected predominantly in areas, which are known to be synaptic fields of multimodal, extra-auditory inputs. Target neurons of synaptoporin-positive synapses in the SOC were then identified by double-labelling immunofluorescence microscopy. We thereby detected synaptoporin puncta perisomatically at nitrergic, glutamatergic and serotonergic neurons but none next to neurons immunoreactive for choline-acetyltransferase and calcitonin-gene related peptide. These results leave open whether functionally distinct neuronal groups are accessed in the SOC by synaptoporin-containing neurons. The last part of our study sought to find out whether synaptoporin-positive neurons originate in the medial paralemniscal nucleus (MPL), which is characterized by expression of the peptide parathyroid hormone 2 (PTH2). Anterograde neuronal tracing upon injection into the MPL in combination with synaptoporin- and PTH2-immunodetection showed that (1) the MPL projects to the periolivary SOC using PTH2 as transmitter, (2) synaptoporin-positive neurons do not originate in the MPL, and (3) the close juxtaposition of synaptoporin-staining with either the anterograde tracer or PTH2 reflect concerted action of the different inputs to the SOC.


Asunto(s)
Colículos Inferiores , Núcleo Olivar , Ratones , Animales , Tronco Encefálico/metabolismo , Colículos Inferiores/metabolismo , Neuronas/metabolismo , Hormona Paratiroidea/metabolismo , Vías Auditivas
11.
Biomater Adv ; 147: 213329, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36801795

RESUMEN

During nozzle-based bioprinting, like inkjet and microextrusion, cells are subjected to hydrostatic pressure for up to several minutes. The modality of the bioprinting-related hydrostatic pressure is either constant or pulsatile depending on the technique. We hypothesized that the difference in the modality of hydrostatic pressure affects the biological response of the processed cells differently. To test this, we used a custom-made setup to apply either controlled constant or pulsatile hydrostatic pressure on endothelial and epithelial cells. Neither bioprinting procedure visibly altered the distribution of selected cytoskeletal filaments, cell-substrate adhesions, and cell-cell contacts in either cell type. In addition, pulsatile hydrostatic pressure led to an immediate increase of intracellular ATP in both cell types. However, the bioprinting-associated hydrostatic pressure triggered a pro-inflammatory response in only the endothelial cells, with an increase of interleukin 8 (IL-8) and a decrease of thrombomodulin (THBD) transcripts. These findings demonstrate that the settings adopted during nozzle-based bioprinting cause hydrostatic pressure that can trigger a pro-inflammatory response in different barrier-forming cell types. This response is cell-type and pressure-modality dependent. The immediate interaction of the printed cells with native tissue and the immune system in vivo might potentially trigger a cascade of events. Our findings, therefore, are of major relevance in particular for novel intra-operative, multicellular bioprinting approaches.


Asunto(s)
Bioimpresión , Células Endoteliales , Bioimpresión/métodos , Presión Hidrostática , Células Epiteliales , Adhesión Celular
12.
J Cell Sci ; 136(1)2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36594662

RESUMEN

Desmosome diseases are caused by dysfunction of desmosomes, which anchor intermediate filaments (IFs) at sites of cell-cell adhesion. For many decades, the focus of attention has been on the role of actin filament-associated adherens junctions in development and disease, especially cancer. However, interference with the function of desmosomes, their molecular constituents or their attachments to IFs has now emerged as a major contributor to a variety of diseases affecting different tissues and organs including skin, heart and the digestive tract. The first Alpine desmosome disease meeting (ADDM) held in Grainau, Germany, in October 2022 brought together international researchers from the basic sciences with clinical experts from diverse fields to share and discuss their ideas and concepts on desmosome function and dysfunction in the different cell types involved in desmosome diseases. Besides the prototypic desmosomal diseases pemphigus and arrhythmogenic cardiomyopathy, the role of desmosome dysfunction in inflammatory bowel diseases and eosinophilic esophagitis was discussed.


Asunto(s)
Desmosomas , Enfermedad , Humanos , Adhesión Celular , Desmosomas/fisiología , Pénfigo
13.
Front Cell Dev Biol ; 10: 1037041, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36531946

RESUMEN

The mechanical properties of the different germ layers of the early mammalian embryo are likely to be critical for morphogenesis. Cytoskeleton components (actin and myosin, microtubules, intermediate filaments) are major determinants of epithelial plasticity and resilience to stress. Here, we take advantage of a mouse reporter for Keratin 8 to record the pattern of the keratin intermediate filaments network in the first epithelia of the developing mouse embryo. At the blastocyst stage, Keratin 8 is strongly expressed in the trophectoderm, and undetectable in the inner cell mass and its derivatives, the epiblast and primitive endoderm. Visceral endoderm cells that differentiate from the primitive endoderm at the egg cylinder stage display apical Keratin 8 filaments. Upon migration of the Anterior Visceral Endoderm and determination of the anterior-posterior axis, Keratin 8 becomes regionally distributed, with a stronger expression in embryonic, compared to extra-embryonic, visceral endoderm. This pattern emerges concomitantly to a modification of the distribution of Filamentous (F)-actin, from a cortical ring to a dense apical shroud, in extra-embryonic visceral endoderm only. Those regional characteristics are maintained across gastrulation. Interestingly, for each stage and region of the embryo, adjacent germ layers display contrasted levels of keratin filaments, which may play a role in their adaptation to growth and morphological changes.

14.
Cells ; 11(19)2022 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-36231039

RESUMEN

Keratins exert important structural but also cytoprotective functions. They have to be adaptable to support cellular homeostasis. Epiplakin (EPPK1) has been shown to decorate keratin filaments in epithelial cells and to play a protective role under stress, but the mechanism is still unclear. Using live-cell imaging of epithelial cells expressing fluorescently tagged EPPK1 and keratin, we report here an unexpected dynamic behavior of EPPK1 upon stress. EPPK1 was diffusely distributed throughout the cytoplasm and not associated with keratin filaments in living cells under standard culture conditions. However, ER-, oxidative and UV-stress, as well as cell fixation, induced a rapid association of EPPK1 with keratin filaments. This re-localization of EPPK1 was reversible and dependent on the elevation of cytoplasmic Ca2+ levels. Moreover, keratin filament association of EPPK1 led to significantly reduced keratin dynamics. Thus, we propose that EPPK1 stabilizes the keratin network in stress conditions, which involve increased cytoplasmic Ca2+.


Asunto(s)
Citoesqueleto , Queratinas , Autoantígenos , Filamentos Intermedios/química
15.
Front Cell Dev Biol ; 10: 946190, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36268507

RESUMEN

Mechanical stability is a fundamental and essential property of epithelial cell sheets. It is in large part determined by cell-cell adhesion sites that are tightly integrated by the cortical cytoskeleton. An intimate crosstalk between the adherens junction-associated contractile actomyosin system and the desmosome-anchored keratin intermediate filament system is decisive for dynamic regulation of epithelial mechanics. A major question in the field is whether and in which way mechanical stress affects junctional plasticity. This is especially true for the desmosome-keratin scaffold whose role in force-sensing is virtually unknown. To examine this question, we inactivated the actomyosin system in human keratinocytes (HaCaT) and canine kidney cells (MDCK) and monitored changes in desmosomal protein turnover. Partial inhibition of myosin II by para-nitro-blebbistatin led to a decrease of the cells' elastic modulus and to reduced desmosomal protein turnover in regions where nascent desmosomes are formed and, to a lower degree, in regions where larger, more mature desmosomes are present. Interestingly, desmosomal proteins are affected differently: a significant decrease in turnover was observed for the desmosomal plaque protein desmoplakin I (DspI), which links keratin filaments to the desmosomal core, and the transmembrane cadherin desmoglein 2 (Dsg2). On the other hand, the turnover of another type of desmosomal cadherin, desmocollin 2 (Dsc2), was not significantly altered under the tested conditions. Similarly, the turnover of the adherens junction-associated E-cadherin was not affected by the low doses of para-nitro-blebbistatin. Inhibition of actin polymerization by low dose latrunculin B treatment and of ROCK-driven actomyosin contractility by Y-27632 treatment also induced a significant decrease in desmosomal DspI turnover. Taken together, we conclude that changes in the cortical force balance affect desmosome formation and growth. Furthermore, they differentially modulate desmosomal protein turnover resulting in changes of desmosome composition. We take the observations as evidence for a hitherto unknown desmosomal mechanosensing and mechanoresponse pathway responding to an altered force balance.

16.
Front Cell Dev Biol ; 10: 901038, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35646906

RESUMEN

Keratin intermediate filaments are dynamic cytoskeletal components that are responsible for tuning the mechanical properties of epithelial tissues. Although it is known that keratin filaments (KFs) are able to sense and respond to changes in the physicochemical properties of the local niche, a direct correlation of the dynamic three-dimensional network structure at the single filament level with the microenvironment has not been possible. Using conventional approaches, we find that keratin flow rates are dependent on extracellular matrix (ECM) composition but are unable to resolve KF network organization at the single filament level in relation to force patterns. We therefore developed a novel method that combines a machine learning-based image restoration technique and traction force microscopy to decipher the fine details of KF network properties in living cells grown on defined ECM patterns. Our approach utilizes Content-Aware Image Restoration (CARE) to enhance the temporal resolution of confocal fluorescence microscopy by at least five fold while preserving the spatial resolution required for accurate extraction of KF network structure at the single KF/KF bundle level. The restored images are used to segment the KF network, allowing numerical analyses of its local properties. We show that these tools can be used to study the impact of ECM composition and local mechanical perturbations on KF network properties and corresponding traction force patterns in size-controlled keratinocyte assemblies. We were thus able to detect increased curvature but not length of KFs on laminin-322 versus fibronectin. Photoablation of single cells in microprinted circular quadruplets revealed surprisingly little but still significant changes in KF segment length and curvature that were paralleled by an overall reduction in traction forces without affecting global network orientation in the modified cell groups irrespective of the ECM coating. Single cell analyses furthermore revealed differential responses to the photoablation that were less pronounced on laminin-332 than on fibronectin. The obtained results illustrate the feasibility of combining multiple techniques for multimodal monitoring and thereby provide, for the first time, a direct comparison between the changes in KF network organization at the single filament level and local force distribution in defined paradigms.

17.
EMBO J ; 41(7): e108747, 2022 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-35266581

RESUMEN

Mesoderm arises at gastrulation and contributes to both the mouse embryo proper and its extra-embryonic membranes. Two-photon live imaging of embryos bearing a keratin reporter allowed recording filament nucleation and elongation in the extra-embryonic region. Upon separation of amniotic and exocoelomic cavities, keratin 8 formed apical cables co-aligned across multiple cells in the amnion, allantois, and blood islands. An influence of substrate rigidity and composition on cell behavior and keratin content was observed in mesoderm explants. Embryos lacking all keratin filaments displayed a deflated extra-embryonic cavity, a narrow thick amnion, and a short allantois. Single-cell RNA sequencing of sorted mesoderm cells and micro-dissected amnion, chorion, and allantois, provided an atlas of transcriptomes with germ layer and regional information. It defined the cytoskeleton and adhesion expression profile of mesoderm-derived keratin 8-enriched cells lining the exocoelomic cavity. Those findings indicate a novel role for keratin filaments in the expansion of extra-embryonic structures and suggest mechanisms of mesoderm adaptation to the environment.


Asunto(s)
Gastrulación , Mesodermo , Animales , Embrión de Mamíferos , Membranas Extraembrionarias , Queratinas/genética , Queratinas/metabolismo , Mesodermo/metabolismo , Ratones
18.
Elife ; 112022 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-35179484

RESUMEN

Mechanobiology requires precise quantitative information on processes taking place in specific 3D microenvironments. Connecting the abundance of microscopical, molecular, biochemical, and cell mechanical data with defined topologies has turned out to be extremely difficult. Establishing such structural and functional 3D maps needed for biophysical modeling is a particular challenge for the cytoskeleton, which consists of long and interwoven filamentous polymers coordinating subcellular processes and interactions of cells with their environment. To date, useful tools are available for the segmentation and modeling of actin filaments and microtubules but comprehensive tools for the mapping of intermediate filament organization are still lacking. In this work, we describe a workflow to model and examine the complete 3D arrangement of the keratin intermediate filament cytoskeleton in canine, murine, and human epithelial cells both, in vitro and in vivo. Numerical models are derived from confocal airyscan high-resolution 3D imaging of fluorescence-tagged keratin filaments. They are interrogated and annotated at different length scales using different modes of visualization including immersive virtual reality. In this way, information is provided on network organization at the subcellular level including mesh arrangement, density and isotropic configuration as well as details on filament morphology such as bundling, curvature, and orientation. We show that the comparison of these parameters helps to identify, in quantitative terms, similarities and differences of keratin network organization in epithelial cell types defining subcellular domains, notably basal, apical, lateral, and perinuclear systems. The described approach and the presented data are pivotal for generating mechanobiological models that can be experimentally tested.


Asunto(s)
Citoesqueleto , Queratinas , Citoesqueleto de Actina/metabolismo , Animales , Proteínas del Citoesqueleto/metabolismo , Citoesqueleto/metabolismo , Perros , Humanos , Filamentos Intermedios/metabolismo , Queratinas/análisis , Ratones
19.
Cell Mol Gastroenterol Hepatol ; 13(4): 1181-1200, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34929421

RESUMEN

BACKGROUND & AIMS: Desmosomes are intercellular junctions connecting keratin intermediate filaments of neighboring cells. The cadherins desmoglein 2 (Dsg2) and desmocollin 2 mediate cell-cell adhesion, whereas desmoplakin (Dsp) provides the attachment of desmosomes to keratins. Although the importance of the desmosome-keratin network is well established in mechanically challenged tissues, we aimed to assess the currently understudied function of desmosomal proteins in intestinal epithelia. METHODS: We analyzed the intestine-specific villin-Cre DSP (DSPΔIEC) and the combined intestine-specific DSG2/DSPΔIEC (ΔDsg2/Dsp) knockout mice. Cross-breeding with keratin 8-yellow fluorescent protein knock-in mice and generation of organoids was performed to visualize the keratin network. A Dsp-deficient colorectal carcinoma HT29-derived cell line was generated and the role of Dsp in adhesion and mechanical stress was studied in dispase assays, after exposure to uniaxial cell stretching and during scratch assay. RESULTS: The intestine of DSPΔIEC mice was histopathologically inconspicuous. Intestinal epithelial cells, however, showed an accelerated migration along the crypt and an enhanced shedding into the lumen. Increased intestinal permeability and altered levels of desmosomal proteins were detected. An inconspicuous phenotype also was seen in ΔDsg2/Dsp mice. After dextran sodium sulfate treatment, DSPΔIEC mice developed more pronounced colitis. A retracted keratin network was seen in the intestinal epithelium of DSPΔIEC/keratin 8-yellow fluorescent protein mice and organoids derived from these mice presented a collapsed keratin network. The level, phosphorylation status, and solubility of keratins were not affected. Dsp-deficient HT29 cells had an impaired cell adhesion and suffered from increased cellular damage after stretch. CONCLUSIONS: Our results show that Dsp is required for proper keratin network architecture in intestinal epithelia, mechanical resilience, and adhesion, thereby protecting from injury.


Asunto(s)
Desmosomas , Queratinas , Animales , Adhesión Celular , Desmoplaquinas/metabolismo , Desmosomas/metabolismo , Queratina-8/metabolismo , Queratinas/metabolismo , Ratones
20.
Sci Rep ; 11(1): 21687, 2021 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-34737300

RESUMEN

Cardiac morphogenesis relies on intricate intercellular signaling. Altered signaling impacts cardiac function and is detrimental to embryonic survival. Here we report an unexpected regulatory role of the desmosomal cell adhesion molecule desmoglein 2 (Dsg2) on murine heart development. A large percentage of Dsg2-mutant embryos develop pericardial hemorrhage. Lethal myocardial rupture is occasionally observed, which is not associated with loss of cardiomyocyte contact but with expansion of abnormal, non-myocyte cell clusters within the myocardial wall. Two types of abnormal cell clusters can be distinguished: Type A clusters involve endocard-associated, round-shaped CD31+ cells, which proliferate and invade the myocardium. They acquire Runx1- and CD44-positivity indicating a shift towards a hematopoietic phenotype. Type B clusters expand subepicardially and next to type A clusters. They consist primarily of Ter119+ erythroid cells with interspersed Runx1+/CD44+ cells suggesting that they originate from type A cell clusters. The observed pericardial hemorrhage is caused by migration of erythrocytes from type B clusters through the epicardium and rupture of the altered cardiac wall. Finally, evidence is presented that structural defects of Dsg2-depleted cardiomyocytes are primary to the observed pathogenesis. We propose that cardiomyocyte-driven paracrine signaling, which likely involves Notch1, directs subsequent trans-differentiation of endo- and epicardial cells. Together, our observations uncover a hitherto unknown regulatory role of Dsg2 in cardiogenesis.


Asunto(s)
Desmogleína 2/fisiología , Corazón/embriología , Miocitos Cardíacos/metabolismo , Animales , Adhesión Celular , Diferenciación Celular , Desmogleína 2/metabolismo , Hematopoyesis/fisiología , Ratones/embriología , Miocardio/metabolismo , Miocitos Cardíacos/fisiología , Organogénesis , Pericardio/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA