Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nutr Cancer ; 76(6): 463-468, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38591931

RESUMEN

Methionine is an essential amino acid critical for cell growth and survival. Preclinical evidence suggests a methionine restricted diet (MRD) sensitizes cancer to radiation therapy (RT), without significant adverse effects. However, this has never been evaluated in humans. The purpose of this pilot study was to evaluate the safety and feasibility of concurrent MRD with standard-of-care definitive RT in adults with any non-skin cancer malignancy. The MRD extended from 2 wk before RT initiation, through 2 wk beyond RT completion. The primary endpoint of safety was assessed as rate of grade 3 or higher acute and late toxicities. Feasibility was assessed with quantitative plasma amino acid panel every 2 wk during the MRD (target plasma methionine 13 µM). Nine patients were accrued over a two-year period, with five able to complete the treatment course. The trial was closed due to slow accrual and subjects' difficulty maintaining the diet. No grade 3 or higher adverse events were observed. Subjects' average methionine level was 18.8 µM during treatment, with average nadir 16.8 µM. These findings suggest the safety of concurrent MRD with RT, with toxicities comparable to those expected with RT alone. However, the diet was challenging, and unacceptable to most patients.


Asunto(s)
Metionina , Humanos , Metionina/sangre , Masculino , Persona de Mediana Edad , Femenino , Proyectos Piloto , Anciano , Adulto , Neoplasias/radioterapia , Neoplasias/dietoterapia , Dieta
2.
Int J Radiat Biol ; 97(10): 1417-1424, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34264175

RESUMEN

RATIONALE: Natural killer (NK) cells play an important role in both the innate and adaptive arms of the immune system. While previous studies have demonstrated the effects of ionizing radiation on cytotoxic function of NK cells, little is known about how a chronic exposure to high LET alpha particles emitted by radionuclides will affect both NK population size and function. This study was conducted to determine the effects of 223RaCl2 on splenic NK cell population size and function in Swiss Webster mice. METHODS: Swiss Webster mice were administered intravenously with 0, 50, or 600 kBq/kg 223RaCl2. Spleens were harvested at 5, 12, and 19 days post-administration. The numbers of splenocytes per spleen were enumerated and flow cytometry was used to assess changes in the distribution of splenocyte subpopulations of B, CD4 and CD8 T lymphocytes, and NK cells. NK functional activity was quantified using YAC-1 target cells and the 51Cr-release assay. RESULTS: The total number of splenocytes was unaffected by 223RaCl2. However, significant changes in the distribution of splenocyte subpopulations were observed for NK cells and CD8 T lymphocytes. NK functional activity was enhanced substantially relative to controls at 12 days post-administration, but decreased markedly by day 19. CONCLUSION: NK functional activity is both diminished and enhanced by 223RaCl2 depending on both administered activity and time post-administration. These results suggest that there may be an optimum window of time to combine the 223RaCl2-induced antitumor NK cell response with other cancer therapies that elicit immune activation.


Asunto(s)
Células Asesinas Naturales , Animales , Linfocitos T CD8-positivos , Citometría de Flujo , Ratones , Radio (Elemento) , Bazo
3.
Int J Radiat Biol ; 97(9): 1217-1228, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34232830

RESUMEN

RATIONALE: The role of radiation-induced bystander effects in cancer therapy with alpha-particle emitting radiopharmaceuticals remains unclear. With renewed interest in using alpha-particle emitters to sterilize disseminated tumor cells, micrometastases, and tumors, a better understanding of the direct effects of alpha particles and the contribution of the bystander responses they induce is needed to refine dosimetric models that help predict clinical benefit. Accordingly, this work models and quantifies the relative importance of direct effects (DE) and bystander effects (BE) in the growth delay of human breast cancer xenografts observed previously in the tibiae of mice treated with 223RaCl2. METHODS: A computational model of MDA-MB-231 and MCF-7 human breast cancer xenografts in the tibial bone marrow of mice administered 223RaCl2 was created. A Monte Carlo radiation transport simulation was performed to assess individual cell absorbed doses. The responses of the breast cancer cells to direct alpha particle irradiation and gamma irradiation were needed as input data for the model and were determined experimentally using a colony-forming assay and compared to the responses of preosteoblast MC3T3-E1 and osteocyte-like MLO-Y4 bone cells. Using these data, a scheme was devised to simulate the dynamic proliferation of the tumors in vivo, including DE and BE propagated from the irradiated cells. The parameters of the scheme were estimated semi-empirically to fit experimental tumor growth. RESULTS: A robust BE component, in addition to a much smaller DE component, was required to simulate the in vivo tumor proliferation. We also found that the relative biological effectiveness (RBE) for cell killing by alpha particle radiation was greater for the bone cells than the tumor cells. CONCLUSION: This modeling study demonstrates that DE of radiation alone cannot explain experimental observations of 223RaCl2-induced growth delay of human breast cancer xenografts. Furthermore, while the mechanisms underlying BE remain unclear, the addition of a BE component to the model is necessary to provide an accurate prediction of the growth delay. More complex models are needed to further comprehend the extent and complexity of 223RaCl2-induced BE.


Asunto(s)
Médula Ósea/efectos de la radiación , Neoplasias de la Mama/patología , Neoplasias de la Mama/radioterapia , Transformación Celular Neoplásica , Modelos Biológicos , Radio (Elemento)/uso terapéutico , Partículas alfa/uso terapéutico , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de la radiación , Femenino , Ratones , Método de Montecarlo , Efectividad Biológica Relativa
4.
Mol Cancer Res ; 19(10): 1739-1750, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34039648

RESUMEN

Radiation-induced bystander effects have been implicated in contributing to the growth delay of disseminated tumor cells (DTC) caused by 223RaCl2, an alpha particle-emitting radiopharmaceutical. To understand how 223RaCl2 affects the growth, we have quantified biological changes caused by direct effects of radiation and bystander effects caused by the emitted radiations on DTC and osteocytes. Characterizing these effects contribute to understanding the efficacy of alpha particle-emitting radiopharmaceuticals and guide expansion of their use clinically. MDA-MB-231 or MCF-7 human breast cancer cells were inoculated intratibially into nude mice that were previously injected intravenously with 50 or 600 kBq/kg 223RaCl2. At 1-day and 3-days postinoculation, tibiae were harvested and examined for DNA damage (γ-H2AX foci) and apoptosis in osteocytes and cancer cells located within and beyond the range (70 µm) of alpha particles emitted from the bone surface. Irradiated and bystander MDA-MB-231 and MCF-7 cells harbored DNA damage. Bystander MDA-MB-231 cells expressed DNA damage at both treatment levels while bystander MCF-7 cells required the higher administered activity. Osteocytes also had DNA damage regardless of inoculated cancer cell line. The extent of DNA damage was quantified by increases in low (1-2 foci), medium (3-5 foci), and high (5+ foci) damage. MDA-MB-231 but not MCF-7 bystander cells showed increases in apoptosis in 223RaCl2-treated animals, as did irradiated osteocytes. In summary, radiation-induced bystander effects contribute to DTC cytotoxicity caused by 223RaCl2. IMPLICATIONS: This observation supports clinical investigation of the efficacy of 223RaCl2 to prevent breast cancer DTC from progressing to oligometastases.


Asunto(s)
Apoptosis/efectos de la radiación , Médula Ósea/efectos de la radiación , Efecto Espectador/efectos de la radiación , Daño del ADN/efectos de la radiación , Radio (Elemento)/farmacología , Partículas alfa/uso terapéutico , Animales , Neoplasias de la Mama/radioterapia , Línea Celular Tumoral , Proliferación Celular/efectos de la radiación , Femenino , Humanos , Células MCF-7 , Ratones , Ratones Desnudos , Osteocitos/efectos de la radiación
5.
J Nucl Med ; 61(1): 89-95, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31519805

RESUMEN

The role of radiation-induced bystander effects in radiation therapy remains unclear. With renewed interest in therapy with α-particle emitters, and their potential for sterilizing disseminated tumor cells (DTCs), it is critical to determine the contribution of bystander effects to the overall response so they can be leveraged for maximum clinical benefit. Methods: Female Foxn1nu athymic nude mice were administered 0, 50, or 600 kBq/kg 223RaCl2 to create bystander conditions. At 24 hours after administration, MDA-MB-231 or MCF-7 human breast cancer cells expressing luciferase were injected into the tibial marrow compartment. Tumor burden was tracked weekly via bioluminescence. Results: The MDA-MB-231 xenografts were observed to have a 10-day growth delay in the 600 kBq/kg treatment group only. In contrast, MCF-7 cells had 7- and 65-day growth delays in the 50 and 600 kBq/kg groups, respectively. Histologic imaging of the tibial marrow compartment, α-camera imaging, and Monte Carlo dosimetry modeling revealed DTCs both within and beyond the range of the α-particles emitted from 223Ra in bone for both MCF-7 and MDA-MB-231 cells. Conclusion: Taken together, these results support the participation of 223Ra-induced antiproliferative/cytotoxic bystander effects in delayed growth of DTC xenografts. They indicate that the delay depends on the injected activity and therefore is dose-dependent. They suggest using 223RaCl2 as an adjuvant treatment for select patients at early stages of breast cancer.


Asunto(s)
Médula Ósea/efectos de la radiación , Neoplasias de la Mama/radioterapia , Efecto Espectador/efectos de la radiación , Radio (Elemento)/uso terapéutico , Partículas alfa , Animales , Médula Ósea/patología , Línea Celular Tumoral , Proliferación Celular , Relación Dosis-Respuesta en la Radiación , Femenino , Factores de Transcripción Forkhead/metabolismo , Humanos , Imagenología Tridimensional , Células MCF-7 , Ratones , Ratones Desnudos , Método de Montecarlo , Trasplante de Neoplasias , Radiometría , Tibia/diagnóstico por imagen , Tibia/patología , Tomografía Computarizada por Rayos X , Resultado del Tratamiento
6.
Radiat Res ; 188(2): 221-234, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28541775

RESUMEN

The treatment of cancer using targeted radionuclide therapy is of interest to nuclear medicine and radiation oncology because of its potential for killing tumor cells while minimizing dose-limiting toxicities to normal tissue. The ionizing radiations emitted by radiopharmaceuticals deliver radiation absorbed doses over protracted periods of time with continuously varying dose rates. As targeted radionuclide therapy becomes a more prominent part of cancer therapy, accurate models for estimating the biologically effective dose (BED) or equieffective dose (EQD2α/ß) will become essential for treatment planning. This study examines the radiobiological impact of the dose rate increase half-time during the uptake phase of the radiopharmaceutical. MDA-MB-231 human breast cancer cells and V79 Chinese hamster lung fibroblasts were irradiated chronically with 662 keV γ rays delivered with time-varying dose rates that are clinically relevant. The temporal dose-rate patterns were: 1. acute, 2. exponential decrease with a half-time of 64 h (Td = 64 h), 3. initial exponential increase to a maximum (half time Ti = 2, 8 or 24 h) followed by exponential decrease (Td = 64 h). Cell survival assays were conducted and surviving fractions were determined. There was a marked reduction in biological effect when Ti was increased. Cell survival data were tested against existing dose-response models to assess their capacity to predict response. Currently accepted models that are used in radiation oncology overestimated BED and EQD2α/ß at low-dose rates and underestimated them at high-dose rates. This appears to be caused by an adaptive response arising as a consequence of the initial low-dose-rate phase of exposure. An adaptive response function was derived that yields more accurate BED and EQD2α/ß values over the spectrum of dose rates and absorbed doses delivered. Our experimental data demonstrate a marked increase in cell survival when the dose-rate-increase half-time is increased, thereby suggesting an adaptive response arising as a consequence of this phase of exposure. We have modified conventional radiobiological models used in the clinic for brachytherapy and external beams of radiation to account for this phenomenon and facilitate their use for treatment planning in targeted radionuclide therapy.


Asunto(s)
Radioisótopos/uso terapéutico , Planificación de la Radioterapia Asistida por Computador , Ciclo Celular/efectos de la radiación , Línea Celular Tumoral , Supervivencia Celular/efectos de la radiación , Relación Dosis-Respuesta en la Radiación , Humanos , Modelos Biológicos , Radiobiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...