Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 145(26): 14548-14561, 2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37343126

RESUMEN

Catalytic NH3 synthesis and decomposition offer a new promising way to store and transport renewable energy in the form of NH3 from remote or offshore sites to industrial plants. To use NH3 as a hydrogen carrier, it is important to understand the catalytic functionality of NH3 decomposition reactions at an atomic level. Here, we report for the first time that Ru species confined in a 13X zeolite cavity display the highest specific catalytic activity of over 4000 h-1 for the NH3 decomposition with a lower activation barrier, compared to most reported catalytic materials in the literature. Mechanistic and modeling studies clearly indicate that the N-H bond of NH3 is ruptured heterolytically by the frustrated Lewis pair of Ruδ+-Oδ- in the zeolite identified by synchrotron X-rays and neutron powder diffraction with Rietveld refinement as well as other characterization techniques including solid-state nuclear magnetic resonance spectroscopy, in situ diffuse reflectance infrared transform spectroscopy, and temperature-programmed analysis. This contrasts with the homolytic cleavage of N-H displayed by metal nanoparticles. Our work reveals the unprecedented unique behavior of cooperative frustrated Lewis pairs created by the metal species on the internal zeolite surface, resulting in a dynamic hydrogen shuttling from NH3 to regenerate framework Brønsted acid sites that eventually are converted to molecular hydrogen.

2.
Faraday Discuss ; 243(0): 520-548, 2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37186100

RESUMEN

The viability of using ammonia as a hydrogen storage vector is contingent on the development of catalytic systems active for ammonia decomposition at low temperatures. Zeolite-supported metal catalysts, unlike systems based on supports like MgO or carbon nanotubes (CNTs), are crystalline and lend themselves to analytic techniques like synchrotron X-ray powder diffraction (SXRD) and Rietveld refinement, allowing precise characterisation of catalytic active sites, and therefore mechanistic elucidation. This study focuses on characterising and optimising novel zeolite-supported Ru catalysts for ammonia decomposition, with a focus on the effects of N-substitution on catalyst structure and activity. Characterisation focuses on an unsubstituted and N-substituted Ru-zeolite Y pair with NMR, FTIR, TEM, XRD, XAS, ICP, and BET, demonstrating the successful incorporation of N into the zeolite framework and an enhancement in metal dispersion upon N-substitution. A series of 18 monometallic and bimetallic catalysts is then synthesised on X and USY supports and screened for catalytic activity. Ru is identified as the most active metal for ammonia decomposition. Observed trends suggest catalyst dispersion can be increased with substantially lower metal loadings, and in particular via the formation of stably anchored oligonuclear metal clusters within the zeolite framework, as opposed to much larger nanoparticles (NPs) on its exterior, following N-substitution of the framework. DFT modelling proposes a prismatic Ru6N6 cluster fitted to XAS data. High-activity catalyst Ru-ß (N) 2.4% demonstrates comparable or better ammonia conversion by Ru wt% than recently reported catalysts in the literature at 450 °C and 30 000 WHSV.

3.
Nat Commun ; 14(1): 647, 2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-36746965

RESUMEN

Ammonia is regarded as an energy vector for hydrogen storage, transport and utilization, which links to usage of renewable energies. However, efficient catalysts for ammonia decomposition and their underlying mechanism yet remain obscure. Here we report that atomically-dispersed Ru atoms on MgO support on its polar (111) facets {denoted as MgO(111)} show the highest rate of ammonia decomposition, as far as we are aware, than all catalysts reported in literature due to the strong metal-support interaction and efficient surface coupling reaction. We have carefully investigated the loading effect of Ru from atomic form to cluster/nanoparticle on MgO(111). Progressive increase of surface Ru concentration, correlated with increase in specific activity per metal site, clearly indicates synergistic metal sites in close proximity, akin to those bimetallic N2 complexes in solution are required for the stepwise dehydrogenation of ammonia to N2/H2, as also supported by DFT modelling. Whereas, beyond surface doping, the specific activity drops substantially upon the formation of Ru cluster/nanoparticle, which challenges the classical view of allegorically higher activity of coordinated Ru atoms in cluster form (B5 sites) than isolated sites.

4.
Chem Asian J ; 15(12): 1819-1828, 2020 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-32343044

RESUMEN

This minireview highlights some recent advances in the rational design of precise Cu nanoclusters supported on microporous materials, including zeolites and metal-organic frameworks. The development of comprehensive characterisation techniques enables scientists to elucidate the structure-activity relationship of these catalysts, which aids the subsequent engineering of more superior catalytic systems at an atomistic perspective.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...