Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Basic Res Cardiol ; 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38491291

RESUMEN

Though myocardial infarction (MI) in pigs is a well-established translational large animal model, it has not yet been widely used for immunotherapy studies, and a comprehensive description of the immune response to MI in this species is lacking. We induced MI in Landrace pigs by balloon occlusion of the left anterior descending artery over 90 min. Within 14 days, the necrotic myocardium was progressively replaced by scar tissue with involvement of myofibroblasts. We characterized the immune response in the heart ex vivo by (immuno)histology, flow cytometry, and RNA sequencing of myocardial tissue on days 3, 7, and 14 after MI. Besides a clear predominance of myeloid cells among heart-infiltrating leukocytes, we detected activated T cells and an increasing proportion of CD4+ Foxp3+ regulatory T cells (Treg), especially in the infarct core-findings that closely mirror what has been observed in mice and humans after MI. Transcriptome data indicated inflammatory activity that was persistent but markedly changing in character over time and linked to extracellular matrix biology. Analysis of lymphocytes in heart-draining lymph nodes revealed significantly higher proliferation rates of T helper cell subsets, including Treg on day 7 after MI, compared to sham controls. Elevated frequencies of myeloid progenitors in the spleen suggest that it might be a site of emergency myelopoiesis after MI in pigs, as previously shown in mice. We thus provide a first description of the immune response to MI in pigs, and our results can aid future research using the species for preclinical immunotherapy studies.

2.
Eur Heart J ; 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38554125

RESUMEN

BACKGROUND AND AIMS: There is significant potential to streamline the clinical pathway for patients undergoing transcatheter aortic valve implantation (TAVI). The purpose of this study was to evaluate the effect of implementing BENCHMARK best practices on the efficiency and safety of TAVI in 28 sites in 7 European countries. METHODS: This was a study of patients with severe symptomatic aortic stenosis (AS) undergoing TAVI with balloon-expandable valves before and after implementation of BENCHMARK best practices. Principal objectives were to reduce hospital length of stay (LoS) and duration of intensive care stay. Secondary objective was to document patient safety. RESULTS: Between January 2020 and March 2023, 897 patients were documented prior to and 1491 patients after the implementation of BENCHMARK practices. Patient characteristics were consistent with a known older TAVI population and only minor differences. Mean LoS was reduced from 7.7 ± 7.0 to 5.8 ± 5.6 days (median 6 vs. 4 days; P < .001). Duration of intensive care was reduced from 1.8 to 1.3 days (median 1.1 vs. 0.9 days; P < .001). Adoption of peri-procedure best practices led to increased use of local anaesthesia (96.1% vs. 84.3%; P < .001) and decreased procedure (median 47 vs. 60 min; P < .001) and intervention times (85 vs. 95 min; P < .001). Thirty-day patient safety did not appear to be compromised with no differences in all-cause mortality (0.6% in both groups combined), stroke/transient ischaemic attack (1.4%), life-threatening bleeding (1.3%), stage 2/3 acute kidney injury (0.7%), and valve-related readmission (1.2%). CONCLUSIONS: Broad implementation of BENCHMARK practices contributes to improving efficiency of TAVI pathway reducing LoS and costs without compromising patient safety.

3.
Nucleic Acids Res ; 52(8): 4215-4233, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38364861

RESUMEN

The limited regenerative capacity of the human heart contributes to high morbidity and mortality worldwide. In contrast, zebrafish exhibit robust regenerative capacity, providing a powerful model for studying how to overcome intrinsic epigenetic barriers maintaining cardiac homeostasis and initiate regeneration. Here, we present a comprehensive analysis of the histone modifications H3K4me1, H3K4me3, H3K27me3 and H3K27ac during various stages of zebrafish heart regeneration. We found a vast gain of repressive chromatin marks one day after myocardial injury, followed by the acquisition of active chromatin characteristics on day four and a transition to a repressive state on day 14, and identified distinct transcription factor ensembles associated with these events. The rapid transcriptional response involves the engagement of super-enhancers at genes implicated in extracellular matrix reorganization and TOR signaling, while H3K4me3 breadth highly correlates with transcriptional activity and dynamic changes at genes involved in proteolysis, cell cycle activity, and cell differentiation. Using loss- and gain-of-function approaches, we identified transcription factors in cardiomyocytes and endothelial cells influencing cardiomyocyte dedifferentiation or proliferation. Finally, we detected significant evolutionary conservation between regulatory regions that drive zebrafish and neonatal mouse heart regeneration, suggesting that reactivating transcriptional and epigenetic networks converging on these regulatory elements might unlock the regenerative potential of adult human hearts.


Asunto(s)
Cromatina , Redes Reguladoras de Genes , Corazón , Histonas , Miocitos Cardíacos , Regeneración , Pez Cebra , Pez Cebra/genética , Animales , Regeneración/genética , Cromatina/metabolismo , Cromatina/genética , Histonas/metabolismo , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/citología , Ratones , Humanos , Epigénesis Genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Código de Histonas , Diferenciación Celular/genética
4.
Clin Res Cardiol ; 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38358415

RESUMEN

PURPOSE: We describe the manifestations and course of patients with pleuropericarditis (PP). Serum parameters were analyzed to evaluate the contribution of autoimmune and autoinflammatory mechanisms to PP pathogenesis. Finally, we outline risk factors for recurrent PP attacks. METHODS: Electronic medical records of the University Hospital Heidelberg were screened for PP diagnosis between the years 2009 and 2021. A total of 164 patients were detected and compared to patients suffering from systemic lupus erythematosus (SLE)-associated PP. Follow-up data were collected until January 2023. RESULTS: In 57.3% of a total of 164 PP cases, no trigger was identified (idiopathic PP). The clinical manifestations were similar in subgroups with different triggers (idiopathic, post-cardiac injury and post-infectious). None of the patients in the idiopathic-PP (i-PP) group fulfilled the diagnostic criteria of an autoimmune disease and the i-PP group could be clearly discriminated by clinical, epidemiological and serological means from the control cohort of SLE-associated PP. After a median follow-up of 1048 days, the majority of PP patients (72.7%) had at least one PP relapse. Univariate analyses showed that CRP, SAA (serum amyloid A), troponin T, NT-BNP and post-cardiac injury were negatively correlated, while the presence of fever and an idiopathic trigger were positively correlated with recurrence of PP. Multivariate analyses showed that fever, an idiopathic trigger and low SAA values were risk factors for PP recurrence. CONCLUSION: This study highlights that most cases of PP are idiopathic and PP cases with various triggers have an identical clinical phenotype. Our data suggest that the clinical, epidemiological and serological characteristics of idiopathic PP considerably differ from patients with PP caused by autoimmune disease like SLE. We further demonstrate that PP has a high risk of recurrence and identify factors associated with this risk, allowing for a targeted secondary prophylaxis.

5.
Nat Commun ; 15(1): 606, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38242884

RESUMEN

Hematopoietic mutations in epigenetic regulators like DNA methyltransferase 3 alpha (DNMT3A), play a pivotal role in driving clonal hematopoiesis of indeterminate potential (CHIP), and are associated with unfavorable outcomes in patients suffering from heart failure (HF). However, the precise interactions between CHIP-mutated cells and other cardiac cell types remain unknown. Here, we identify fibroblasts as potential partners in interactions with CHIP-mutated monocytes. We used combined transcriptomic data derived from peripheral blood mononuclear cells of HF patients, both with and without CHIP, and cardiac tissue. We demonstrate that inactivation of DNMT3A in macrophages intensifies interactions with cardiac fibroblasts and increases cardiac fibrosis. DNMT3A inactivation amplifies the release of heparin-binding epidermal growth factor-like growth factor, thereby facilitating activation of cardiac fibroblasts. These findings identify a potential pathway of DNMT3A CHIP-driver mutations to the initiation and progression of HF and may also provide a compelling basis for the development of innovative anti-fibrotic strategies.


Asunto(s)
ADN Metiltransferasa 3A , Insuficiencia Cardíaca , Humanos , Hematopoyesis Clonal , ADN (Citosina-5-)-Metiltransferasas/genética , ADN Metiltransferasa 3A/genética , Fibroblastos , Fibrosis/genética , Fibrosis/patología , Insuficiencia Cardíaca/genética , Hematopoyesis/genética , Leucocitos Mononucleares , Mutación , Cardiopatías/genética , Cardiopatías/patología
6.
Pharmaceutics ; 15(12)2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38140086

RESUMEN

The calcium-dependent serine endoprotease PACE4 is evaluated as a therapeutic target for prostate cancer. The peptide Ac-[d-Leu]LLLRVK-amba inhibits PACE4 with high affinity and has shown efficacy in preclinical mice xenograft models of prostate cancer. To support in vivo examinations of the potential therapeutic peptide Ac-[d-Leu]LLLRVK-amba, we established a highly sensitive assay for its quantification in mouse whole blood microsamples based on UPLC-MS/MS determination. Ac-[d-Leu]LLLRVK-amba was very labile during sample processing, which was particularly pronounced in plasma. High resolution mass spectrometric investigations of the metabolism/degradation in plasma revealed that no peptide bond hydrolysis generated products were formed, leaving the cause of the observed consumption of the peptide elusive. As a consequence, whole-blood quantification was developed relying on the immediate snap-freezing of blood samples after collection and immediate sample processing after serial thawing to ensure accurate and reliable quantification. The assay was validated according to the applicable recommendations of the FDA and EMA in a range of 10-10,000 ng/mL and applied to determine the pharmacokinetics of Ac-[d-Leu]LLLRVK-amba after intravenous and intraperitoneal administration to mice. Individual pharmacokinetic profiles were assessed using four microsamplings per animal. Intraperitoneal absorption was found to be efficient, demonstrating that this well-manageable route of administration is feasible for preclinical efficacy experiments with Ac-[d-Leu]LLLRVK-amba.

7.
Nat Cardiovasc Res ; 2(4): 399-416, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37583573

RESUMEN

Recovery of cardiac function is the holy grail of heart failure therapy yet is infrequently observed and remains poorly understood. In this study, we performed single-nucleus RNA sequencing from patients with heart failure who recovered left ventricular systolic function after left ventricular assist device implantation, patients who did not recover and non-diseased donors. We identified cell-specific transcriptional signatures of recovery, most prominently in macrophages and fibroblasts. Within these cell types, inflammatory signatures were negative predictors of recovery, and downregulation of RUNX1 was associated with recovery. In silico perturbation of RUNX1 in macrophages and fibroblasts recapitulated the transcriptional state of recovery. Cardiac recovery mediated by BET inhibition in mice led to decreased macrophage and fibroblast Runx1 expression and diminished chromatin accessibility within a Runx1 intronic peak and acquisition of human recovery signatures. These findings suggest that cardiac recovery is a unique biological state and identify RUNX1 as a possible therapeutic target to facilitate cardiac recovery.

8.
Cells ; 12(15)2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37566005

RESUMEN

BACKGROUND: Homozygosity for the C allele of the -1T>C single nucleotide polymorphism (SNP) of the CD40 gene (rs1883832) is associated with susceptibility to coronary heart disease (CHD), enhanced CD40 expression, and shedding. The disintegrin metalloprotease ADAM17 can cleave various cell surface proteins. This study investigates an association between ADAM17-mediated CD40 shedding and inflammation in CC genotype human endothelial cells. METHODS: Human umbilical vein endothelial cells (HUVEC) carrying the CC genotype were stimulated with soluble CD40 ligand (sCD40L) or tumor necrosis factor-α (TNFα). Messenger RNA and protein expression were determined with standard methods. Levels of high sensitive c-reactive protein (hs-CRP), interleukin-6 (IL-6), and sCD40 in plasma samples from patients with CHD were assessed using ELISA. RESULTS: ADAM17 surface abundance was elevated following stimulation with CD40L and TNFα just as its regulator iRhom2. Inhibition of ADAM17 prevented TNFα-induced sCD40 and soluble vascular cell adhesion molecule-1 release into the conditioned medium and reinforced CD40 surface abundance. Secondary to inhibition of ADAM17, stimulation with CD40L or TNFα upregulated monocyte chemoattractant protein-1 mRNA and protein. Levels of sCD40 and the inflammatory biomarkers hs-CRP and IL-6 were positively correlated in the plasma of patients with CHD. CONCLUSIONS: We provide a mechanism by which membrane-bound CD40 is shed from the endothelial cell surface by ADAM17, boosting sCD40 formation and limiting downstream CD40 signaling. Soluble CD40 may represent a robust biomarker for CHD, especially in conjunction with homozygosity for the C allele of the -1T>C SNP of the CD40 gene.


Asunto(s)
Proteína ADAM17 , Antígenos CD40 , Humanos , Proteína ADAM17/genética , Proteína C-Reactiva , Antígenos CD40/metabolismo , Ligando de CD40/farmacología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Interleucina-6 , Factor de Necrosis Tumoral alfa/farmacología
9.
Basic Res Cardiol ; 118(1): 25, 2023 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-37378715

RESUMEN

RNA-protein interactions are central to cardiac function, but how activity of individual RNA-binding protein is regulated through signaling cascades in cardiomyocytes during heart failure development is largely unknown. The mechanistic target of rapamycin kinase is a central signaling hub that controls mRNA translation in cardiomyocytes; however, a direct link between mTOR signaling and RNA-binding proteins in the heart has not been established. Integrative transcriptome and translatome analysis revealed mTOR dependent translational upregulation of the RNA binding protein Ybx1 during early pathological remodeling independent of mRNA levels. Ybx1 is necessary for pathological cardiomyocyte growth by regulating protein synthesis. To identify the molecular mechanisms how Ybx1 regulates cellular growth and protein synthesis, we identified mRNAs bound to Ybx1. We discovered that eucaryotic elongation factor 2 (Eef2) mRNA is bound to Ybx1, and its translation is upregulated during cardiac hypertrophy dependent on Ybx1 expression. Eef2 itself is sufficient to drive pathological growth by increasing global protein translation. Finally, Ybx1 depletion in vivo preserved heart function during pathological cardiac hypertrophy. Thus, activation of mTORC1 links pathological signaling cascades to altered gene expression regulation by activation of Ybx1 which in turn promotes translation through increased expression of Eef2.


Asunto(s)
Insuficiencia Cardíaca , Serina-Treonina Quinasas TOR , Cardiomegalia/metabolismo , Insuficiencia Cardíaca/metabolismo , Miocitos Cardíacos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal/fisiología , Serina-Treonina Quinasas TOR/metabolismo , Animales , Ratones , Ratas
10.
Front Cardiovasc Med ; 10: 1108256, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36865886

RESUMEN

Introduction: Kidney dysfunction is common in patients with aortic stenosis (AS) and correction of the aortic valve by transcatheter aortic valve implantation (TAVI) often affects kidney function. This may be due to microcirculatory changes. Methods: We evaluated skin microcirculation with a hyperspectral imaging (HSI) system, and compared tissue oxygenation (StO2), near-infrared perfusion index (NIR), tissue hemoglobin index (THI) and tissue water index (TWI) in 40 patients undergoing TAVI versus 20 control patients. HSI parameters were measured before TAVI (t1), directly after TAVI (t2), and on postinterventional day 3 (t3). The primary outcome was the correlation of tissue oxygenation (StO2) to the creatinine level after TAVI. Results: We performed 116 HSI image recordings in patients undergoing TAVI for the treatment of severe aortic stenosis and 20 HSI image recordings in control patients. Patients with AS had a lower THI at the palm (p = 0.034) and a higher TWI at the fingertips (p = 0.003) in comparison to control patients. TAVI led to an increase of TWI, but had no uniform enduring effect on StO2 and THI. Tissue oxygenation StO2 at both measurement sites correlated negatively with creatinine levels after TAVI at t2 (palm: ρ = -0.415; p = 0.009; fingertip: ρ = -0.519; p < 0.001) and t3 (palm: ρ = -0.427; p = 0.008; fingertip: ρ = -0.398; p = 0.013). Patients with higher THI at t3 reported higher physical capacity and general health scores 120 days after TAVI. Conclusion: HSI is a promising technique for periinterventional monitoring of tissue oxygenation and microcirculatory perfusion quality, which are related to kidney function, physical capacity, and clinical outcomes after TAVI. Clinical trial registration: https://drks.de/search/de/trial, identifier DRKS00024765.

11.
Circ Cardiovasc Imaging ; 16(1): e014071, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36649453

RESUMEN

Heart failure involves a complex interplay between diverse populations of immune cells that dynamically shift across the natural history of disease. Within this context, the character of the immune response is a key determinant of clinical outcomes. Recent technological advances in single-cell transcriptomic, spatial, and proteomic technologies have fueled an explosion of new and clinically relevant insights into distinct immune cell populations that reside within the diseased heart including potential targets for molecular imaging and therapy. In this review, we will discuss the immune cell types and their respective functions with respect to myocardial infarction remodeling, dilated cardiomyopathy, and heart failure with preserved ejection fraction. In addition, we give a brief overview regarding myocarditis and cardiac sarcoidosis as inflammatory heart failure etiologies. We will highlight markers and cell populations as targets for molecular imaging to visualize inflammation and tissue healing and discuss clinical implications including the development and implementation of precision medicine approaches.


Asunto(s)
Insuficiencia Cardíaca , Miocarditis , Humanos , Proteómica , Corazón , Insuficiencia Cardíaca/diagnóstico por imagen , Miocarditis/tratamiento farmacológico , Inflamación
12.
Basic Res Cardiol ; 117(1): 61, 2022 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-36383299

RESUMEN

AIMS: P-selectin is an activatable adhesion molecule on platelets promoting platelet aggregation, and platelet-leukocyte complex (PLC) formation. Increased numbers of PLC are circulating in the blood of patients shortly after acute myocardial infarction and predict adverse outcomes. These correlations led to speculations about whether PLC may represent novel therapeutic targets. We therefore set out to elucidate the pathomechanistic relevance of PLC in myocardial ischemia and reperfusion injury. METHODS AND RESULTS: By generating P-selectin deficient bone marrow chimeric mice, the post-myocardial infarction surge in PLC numbers in blood was prevented. Yet, intravital microscopy, flow cytometry and immunohistochemical staining, echocardiography, and gene expression profiling showed unequivocally that leukocyte adhesion to the vessel wall, leukocyte infiltration, and myocardial damage post-infarction were not altered in response to the lack in PLC. CONCLUSION: We conclude that myocardial infarction associated sterile inflammation triggers PLC formation, reminiscent of conserved immunothrombotic responses, but without PLC influencing myocardial ischemia and reperfusion injury in return. Our experimental data do not support a therapeutic concept of selectively targeting PLC formation in myocardial infarction.


Asunto(s)
Infarto del Miocardio , Isquemia Miocárdica , Daño por Reperfusión Miocárdica , Daño por Reperfusión , Ratones , Animales , Selectina-P/metabolismo , Daño por Reperfusión Miocárdica/metabolismo , Leucocitos , Infarto del Miocardio/metabolismo , Daño por Reperfusión/metabolismo , Isquemia Miocárdica/metabolismo
13.
Int J Mol Sci ; 23(20)2022 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-36293109

RESUMEN

Wnt (a portmanteau of Wingless and Int-1) signaling in the adult heart is largely quiescent. However, there is accumulating evidence that it gets reactivated during the healing process after myocardial infarction (MI). We here tested the therapeutic potential of the Wnt secretion inhibitor LGK-974 on MI healing. Ischemia/reperfusion (I/R) injury was induced in mice and Wnt signaling was inhibited by oral administration of the porcupine inhibitor LGK-974. The transcriptome was analyzed from infarcted tissue by using RNA sequencing analysis. The inflammatory response after I/R was evaluated by flow cytometry. Heart function was assessed by echocardiography and fibrosis by Masson's trichrome staining. Transcriptome and gene set enrichment analysis revealed a modulation of the inflammatory response upon administration of the Wnt secretion inhibitor LGK-974 following I/R. In addition, LGK-974-treated animals showed an attenuated inflammatory response and improved heart function. In an in vitro model of hypoxic cardiomyocyte and monocyte/macrophage interaction, LGK974 inhibited the activation of Wnt signaling in monocytes/macrophages and reduced their pro-inflammatory phenotype. We here show that Wnt signaling affects inflammatory processes after MI. The Wnt secretion inhibitor LGK-974 appears to be a promising compound for future immunomodulatory approaches to improve cardiac remodeling after MI.


Asunto(s)
Infarto del Miocardio , Daño por Reperfusión Miocárdica , Ratones , Animales , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/genética , Miocardio , Macrófagos , Infarto del Miocardio/genética , Miocitos Cardíacos , Vía de Señalización Wnt , Ratones Endogámicos C57BL , Remodelación Ventricular , Modelos Animales de Enfermedad
14.
Front Immunol ; 13: 968778, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36311800

RESUMEN

Clonal hematopoiesis of indeterminate potential (CHIP) leads to higher mortality, carries a cardiovascular risk and alters inflammation. All three aspects harbor overlaps with the clinical manifestation of COVID-19. This study aimed to identify the impact of CHIP on COVID-19 pathophysiology. 90 hospitalized patients were analyzed for CHIP. In addition, their disease course and outcome were evaluated. With a prevalence of 37.8%, the frequency of a CHIP-driver mutation was significantly higher than the prevalence expected based on median age (17%). CHIP increases the risk of hospitalization in the course of the disease but has no age-independent impact on the outcome within the group of hospitalized patients. Especially in younger patients (45 - 65 years), CHIP was associated with persistent lymphopenia. In older patients (> 65 years), on the other hand, CHIP-positive patients developed neutrophilia in the long run. To what extent increased values of cardiac biomarkers are caused by CHIP independent of age could not be elaborated solely based on this study. In conclusion, our results indicate an increased susceptibility to a severe course of COVID-19 requiring hospitalization associated with CHIP. Secondly, they link it to a differentially regulated cellular immune response under the pressure of SARS-CoV-2 infection. Hence, a patient's CHIP-status bears the potential to serve as biomarker for risk stratification and to early guide treatment of COVID-19 patients.


Asunto(s)
COVID-19 , Humanos , Anciano , COVID-19/epidemiología , SARS-CoV-2 , Hematopoyesis Clonal , Prevalencia , Hospitalización
15.
J Cardiovasc Dev Dis ; 9(9)2022 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-36135430

RESUMEN

Objective: Little is known about the fate of bypass grafts to the right coronary system. To investigate the long-term patency of venous bypass grafts directed to the right coronary artery (RCA) based on postoperative angiograms and to identify predictors of graft occlusion. Methods: In this single-center study, all patients who underwent coronary angiography from 2005 to 2021 after previously undergoing isolated coronary artery bypass grafting (CABG) were included. The primary endpoint was graft occlusion over a median follow-up of 9.1 years. Results: Among a total of 1106 patients (17.0% women, 64 (57−71) years median age), 289 (26.1%) received a sequential vein graft and 798 (72.2%) a single graft. Multivariate regression revealed age (HR 1.019, CI 95% 1.007−1.032), the urgency of CABG (HR 1.355, CI 95% 1.108−1.656), and severely impaired left ventricular function (HR 1.883, CI 95% 1.290−2.748), but not gender and chronic total occlusion (CTO) as predictive factors for graft occlusion. Single conduits were found to be a predictor of graft patency (HR 0.575 CI 95% 0.449−0.737). The angiographic outcome showed an overall 10-year freedom from graft occlusion of 73.4% ± 1.6%. The 5-year (10-year) freedom from graft occlusion was 76.9% ± 2.8% (57.8% ± 4.0%) for sequential grafts and 90.4% ± 1.1% (77.8% ± 1.7%) for single grafts (log-rank p < 0.001). Conclusions: In symptomatic patients with renewed angiography, venous bypass grafting of the RCA showed acceptable long-term patency rates. Single bypass grafting of the RCA was superior to sequential grafting, which needs to be further investigated.

16.
Front Genet ; 13: 912572, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35937994

RESUMEN

We introduce Single-cell Nanopore Spatial Transcriptomics (scNaST), a software suite to facilitate the analysis of spatial gene expression from second- and third-generation sequencing, allowing to generate a full-length near-single-cell transcriptional landscape of the tissue microenvironment. Taking advantage of the Visium Spatial platform, we adapted a strategy recently developed to assign barcodes to long-read single-cell sequencing data for spatial capture technology. Here, we demonstrate our workflow using four short axis sections of the mouse heart following myocardial infarction. We constructed a de novo transcriptome using long-read data, and successfully assigned 19,794 transcript isoforms in total, including clinically-relevant, but yet uncharacterized modes of transcription, such as intron retention or antisense overlapping transcription. We showed a higher transcriptome complexity in the healthy regions, and identified intron retention as a mode of transcription associated with the infarct area. Our data revealed a clear regional isoform switching among differentially used transcripts for genes involved in cardiac muscle contraction and tissue morphogenesis. Molecular signatures involved in cardiac remodeling integrated with morphological context may support the development of new therapeutics towards the treatment of heart failure and the reduction of cardiac complications.

17.
Front Cardiovasc Med ; 9: 853967, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35935635

RESUMEN

Objective: Cardiopulmonary bypass (CPB) can lead to systemic inflammation, which is associated with higher morbidity. Therefore, we investigated the metabolism of isolated blood monocytes before and after CPB compared to healthy controls. Methods: In this prospective, monocentric, observational study, we included 30 patients undergoing CPB and 20 controls. We isolated monocytes from heparinized blood and investigated their metabolism by using Seahorse technology before (t0), 4 h (t4), and 24 h (t24) after the start of the CPB. We also examined programmed cell death 1 ligand (PD-L1), PD-L2, V-domain Ig suppressor of T cell activation (VISTA), and human leukocyte antigen-DR isotype (HLA-DR) using fluorescence-activated cell sorting analysis. Additionally, we investigated plasma cytokine levels in patients without and after ex vivo stimulation. Results: CPB-induced inflammatory responses are shown by significantly elevated plasma interleukin-6 levels in the CPB group compared to baseline and controls [t0: 0 ng/ml (95%CI 0-0 ng/ml); t4: 0.16 ng/ml (95%CI 0.1-0.197 ng/ml), p < 0.0001; t24: 0.11 ng/ml (95% CI 0.1-0.16 ng/ml), p < 0.0001, and controls: 0 ng/ml (95% CI 0-0 ng/ml)]. The cytokine release in the ex vivo stimulation is reduced for lipopolysaccharide stimulation at t4 [t0: 35.68 ng/ml (95% CI 22.17-46.57 ng/ml) vs. t4: 15.02 (95% CI 10.25-24.78 ng/ml), p < 0.0001]. Intracellular metabolism of monocytes after CPB showed a protracted shift to aerobic glycolysis [t0: 179.2 pmol/min (95% CI 138.0-205.1 pmol/min) vs. t24: 250.1 pmol/min (95% CI 94.8-300.2 pmol/min), p < 0.0001]. Additionally, we observed an altered metabolism in monocytes in patients undergoing cardiac surgery compared to controls even before any surgical procedure [t0: 179.2 pmol/min (95% CI 138.0-205.1) vs. controls 97.4 (95% CI 59.13-144.6 pmol/min), p = 0.0031]. Conclusion: After CPB, patients' monocytes show a shift in metabolism from oxidative phosphorylation to aerobic glycolysis, which is associated with energy-demanding and proinflammatory processes. This is the first study to show changes in monocyte immunometabolism in cardiac surgery. Monocytes of patients undergoing cardiac surgery were leaning toward aerobic glycolysis even before any surgical procedure was conducted. Leaving the question of the pathophysiological mechanisms for future studies to be investigated and paving the way for potential therapy approaches preventing inflammatory effects of CPB.

18.
Basic Res Cardiol ; 117(1): 32, 2022 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-35737129

RESUMEN

Alterations of RNA editing that affect the secondary structure of RNAs can cause human diseases. We therefore studied RNA editing in failing human hearts. Transcriptome sequencing showed that adenosine-to-inosine (A-to-I) RNA editing was responsible for 80% of the editing events in the myocardium. Failing human hearts were characterized by reduced RNA editing. This was primarily attributable to Alu elements in introns of protein-coding genes. In the failing left ventricle, 166 circRNAs were upregulated and 7 circRNAs were downregulated compared to non-failing controls. Most of the upregulated circRNAs were associated with reduced RNA editing in the host gene. ADAR2, which binds to RNA regions that are edited from A-to-I, was decreased in failing human hearts. In vitro, reduction of ADAR2 increased circRNA levels suggesting a causal effect of reduced ADAR2 levels on increased circRNAs in the failing human heart. To gain mechanistic insight, one of the identified upregulated circRNAs with a high reduction of editing in heart failure, AKAP13, was further characterized. ADAR2 reduced the formation of double-stranded structures in AKAP13 pre-mRNA, thereby reducing the stability of Alu elements and the circularization of the resulting circRNA. Overexpression of circAKAP13 impaired the sarcomere regularity of human induced pluripotent stem cell-derived cardiomyocytes. These data show that ADAR2 mediates A-to-I RNA editing in the human heart. A-to-I RNA editing represses the formation of dsRNA structures of Alu elements favoring canonical linear mRNA splicing and inhibiting the formation of circRNAs. The findings are relevant to diseases with reduced RNA editing and increased circRNA levels and provide insights into the human-specific regulation of circRNA formation.


Asunto(s)
Células Madre Pluripotentes Inducidas , Edición de ARN , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , ARN/química , ARN/genética , ARN/metabolismo , ARN Circular/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
19.
Circulation ; 145(10): 765-782, 2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35113652

RESUMEN

BACKGROUND: Recent studies have established that CCR2 (C-C chemokine receptor type 2) marks proinflammatory subsets of monocytes, macrophages, and dendritic cells that contribute to adverse left ventricle (LV) remodeling and heart failure progression. Elucidation of the effector mechanisms that mediate adverse effects of CCR2+ monocytes, macrophages, and dendritic cells will yield important insights into therapeutic strategies to suppress myocardial inflammation. METHODS: We used mouse models of reperfused myocardial infarction, angiotensin II and phenylephrine infusion, and diphtheria toxin cardiomyocyte ablation to investigate CCL17 (C-C chemokine ligand 17). We used Ccl17 knockout mice, flow cytometry, RNA sequencing, biochemical assays, cell trafficking studies, and in vivo cell depletion to identify the cell types that generate CCL17, define signaling pathways that controlled its expression, delineate the functional importance of CCL17 in adverse LV remodeling and heart failure progression, and determine the mechanistic basis by which CCL17 exerts its effects. RESULTS: We demonstrated that CCL17 is expressed in CCR2+ macrophages and cluster of differentiation 11b+ conventional dendritic cells after myocardial infarction, angiotensin II and phenylephrine infusion, and diphtheria toxin cardiomyocyte ablation. We clarified the transcriptional signature of CCL17+ macrophages and dendritic cells and identified granulocyte-macrophage colony-stimulating factor (GM-CSF) signaling as a key regulator of CCL17 expression through cooperative activation of STAT5 (signal transducer and activator of transcription 5) and canonical NF-κB (nuclear factor κ-light-chain-enhancer of activated B cells) signaling. Ccl17 deletion resulted in reduced LV remodeling, decreased myocardial fibrosis and cardiomyocyte hypertrophy, and improved LV systolic function after myocardial infarction and angiotensin II and phenylephrine infusion. We observed increased abundance of regulatory T cells (Tregs) in the myocardium of injured Ccl17 knockout mice. CCL17 inhibited Treg recruitment through biased activation of CCR4. CCL17 activated Gq signaling and CCL22 (C-C chemokine ligand 22) activated both Gq and ARRB (ß-arrestin) signaling downstream of CCR4. CCL17 competitively inhibited CCL22 stimulated ARRB signaling and Treg migration. We provide evidence that Tregs mediated the protective effects of Ccl17 deletion on myocardial inflammation and adverse LV remodeling. CONCLUSIONS: These findings identify CCL17 as a proinflammatory mediator of CCR2+ macrophages and dendritic cells and suggest that inhibition of CCL17 may serve as an effective strategy to promote Treg recruitment and suppress myocardial inflammation.


Asunto(s)
Insuficiencia Cardíaca , Infarto del Miocardio , Angiotensina II/farmacología , Animales , Quimiocina CCL17/metabolismo , Quimiocina CCL17/farmacología , Toxina Diftérica/metabolismo , Toxina Diftérica/farmacología , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/metabolismo , Humanos , Inflamación/metabolismo , Ligandos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fenilefrina/metabolismo , Fenilefrina/farmacología , Linfocitos T Reguladores/metabolismo , Remodelación Ventricular
20.
JACC Cardiovasc Interv ; 14(14): 1578-1590, 2021 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-34294400

RESUMEN

OBJECTIVES: The aim of this study was to characterize the feasibility of coronary angiography (CA) and percutaneous coronary intervention (PCI) in acute settings among patients who have undergone transcatheter aortic valve replacement (TAVR). BACKGROUND: Impaired coronary access after TAVR may be challenging and particularly in acute settings could have deleterious consequences. METHODS: In this international registry, data from patients with prior TAVR requiring urgent or emergent CA were retrospectively collected. A total of 449 patients from 25 sites with acute coronary syndromes (89.1%) and other acute cardiovascular situations (10.9%) were included. RESULTS: Success rates were high for CA of the right coronary artery (98.3%) and left coronary artery (99.3%) and were higher among patients with short stent-frame prostheses (SFPs) than in those with long SFPs for CA of the right coronary artery (99.6% vs 95.9%; P = 0.005) but not for CA of the left coronary artery (99.7% vs 98.7%; P = 0.24). PCI of native coronary arteries was successful in 91.4% of cases and independent of valve type (short SFP 90.4% vs long SFP 93.4%; P = 0.44). Guide engagement failed in 6 patients, of whom 3 underwent emergent coronary artery bypass grafting and another 3 died in the hospital. Among patients requiring revascularization of native vessels, independent predictors of 30-day all-cause mortality were prior diabetes, cardiogenic shock, and failed PCI but not valve type or success of coronary engagement. CONCLUSIONS: CA or PCI after TAVR in acute settings is usually successful, but selective coronary engagement may be more challenging in the presence of long SFPs. Among patients requiring PCI, prior diabetes, cardiogenic shock, and failed PCI were predictors of early mortality.


Asunto(s)
Síndrome Coronario Agudo , Estenosis de la Válvula Aórtica , Enfermedad de la Arteria Coronaria , Intervención Coronaria Percutánea , Reemplazo de la Válvula Aórtica Transcatéter , Síndrome Coronario Agudo/diagnóstico por imagen , Síndrome Coronario Agudo/terapia , Válvula Aórtica/diagnóstico por imagen , Válvula Aórtica/cirugía , Estenosis de la Válvula Aórtica/diagnóstico por imagen , Estenosis de la Válvula Aórtica/cirugía , Enfermedad de la Arteria Coronaria/cirugía , Enfermedad de la Arteria Coronaria/terapia , Estudios de Factibilidad , Humanos , Intervención Coronaria Percutánea/efectos adversos , Estudios Retrospectivos , Reemplazo de la Válvula Aórtica Transcatéter/efectos adversos , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA